
NASA Technical Paper 1690

Programmer's Manual for MMLE3,

a General FORTRAN Program

for Maximum Likelihood

Parameter Estimation

Richard E. Maine

CA$_ FILE'
COp

JUNE 1981

fiJ/_A

NASA Technical Paper 1690

Programmer's Manual for MMLE3,

a General FORTRAN Program
for Maximum Likelihood

Parameter Estimation

Richard E. Maine

Dryden Flight Research Center

Edwards, California

NI A
National Aeronautics

and Space Administration

Scientific and Technical

Information Branch

1981

CONTENTS

INTRODUCTION Page
• " " 1

NOMENCLATURE
• ° " " ° • " ° ° • ° ° ° ° 2

1.0 FORMAT OF DECKS, LISTINGS, AND MODIFICATIONS

I.i Decks and Common Decks
1.2 Reference Maps 5
1.3 Card Numbers 6
i. 4 Modifications 6

I. 5 Tapes 6
.... " " 9

2.0 IMPLEMENTATION CONSIDERATIONS 11

2.1 FORTRAN
2.2 Files Ii

......... " • " ° ° 12

2.3 Segmentation or Overlay 13
2.4 EISPACK Routines

.......................... 16
2.5 Plotting 17

2.5.1 PLOTS (BUF, NBUF, UPLOT) 17
2.5.2 PLOT (X, Y, IPEN) 18
2.5.3 FACTOR (FACT)

T; i A "GL IN) 182.5•4 SYMBOL (X, Y, HG I N E 18
2.5.5 NUMBER (X, Y, HGT, A, ANGLE, N) 18

2.6 Date and Time 19
2 7 Assembly Language Routines 19

2.8 Small Computer Systems 24
2.8.1 Matrix Dimensions 24
2.8.2 Predicted-Derivative Input 24
2.8.3 Plotting 25
2.8.4 State Noise Option 25
2.8.5 Miscellaneous Files 25
2.8.6 HQR and HQR2 26
2.8.7 Minimum Program 26

3.0 MATRIX STORAGE
• " " " • • • • • • 27

3.1 Conventions
............................ 27

3.2 Changing Maximum Dimensions 29

4.0 PROGRAM STRUCTURE
........................ 29

APPENDIX A -- DESCRIPTIONS OF SUBROUTINES AND COMMON DECKS 33

CONTENTS
............................... 33

A 1 Common Decks
" • 37

A.1 1 Basic Program.......................... 37
A.1 2 Standard Aircraft Routines" • 49

..°
111

Page

A.2 Subroutines 51
51

A.2.1 Basic Program 68
A.2.2 Utility Subroutines 77
A.2.3 Standard Aircraft Routines

A.2.4 EISPACK Routines 87

INDEX OF COMMON DECKS AND SUBROUTINES 88

APPENDIX B -- PROGRAM COMSUB 90

APPENDIX C -- PROGRAM COMPUN 96

APPENDIX D -- TEST CASES 103

D. 1 One-Dimensional Test Case 103

D.2 Longitudinal Test Cases i06

D.3 Lateral-Directional Test Case ill

I13
REFERENCES

SUPPLEMENT 1 -- MICROFICHE LISTINGS AND REFERENCE MAPS

OF THE MMLE3 PROGRAM Back cover

SUPPLEMENT 2 -- MICROFICHE LISTING OF TEST CASES Back cover

iv

PROGRAMMER'S MANUAL FOR MMLE3,

A GENERAL FORTRAN PROGRAM FOR

MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

Richard E. Maine

Dryden Flight Research Center

INTRODUCTION

This report is a programmer's manual for the FORTRAN IV computer program

MMLE3, a maximum likelihood parameter estimation program capable of handling

general bilinear dynamic equations of arbitrary order with measurement noise and/

or state noise (process noise). The basic MMLE3 program is quite general and,

therefore, applicable to a wide variety of problems. The basic program can interact

with a set of user-written problem-specific routines to simplify the use of the program

on specific systems. A set of user routines for the aircraft stability and control

derivative estimation problem is provided with the program. A companion document,

the User's Manual (ref. 1), describes the theory and use of the program. This

paper contains program listings and suggestions for implementation on various com-

puter systems. Enough information is given about the purpose and operation of each

subroutine so that users can make modifications if desired. Complete listings and

reference maps of the routines are included on microfiche as supplement I. Four test

cases are discussed; listings of the input cards and program output for the test

cases are included on microfiche as supplement 2.

It is advised that sections 1 and 2 of this paper be read carefully before attempting

to implement the MMLE3 program on a computer system. The remainder of the paper,
particularly appendix A, is a reference for detailed information about the structure
and coding of the program.

NOMENCLATURE

A

a
n

a
x

B

C

C A

CL

C_

C
m

C N

CX

Cy

D

E

FF*

GG*

H

K

n

P

q

state equation matrix

normal acceleration, g

longitudinal acceleration, g

state equation matrix

observation matrix

axial force coefficient

liftcoefficient

rolling moment coefficient

pitching moment coefficient

normal force coefficient

longitudinal force coefficient

lateral force coefficient

observation matrix

observation matrix

state noise power spectral density matrix

residual covariance matrix

measurement noise covariance matrix

observation matrix

Kalman filtergain matrix (program variable name KGAIN)

state noise vector

Riccati covariance matrix

pitch rate, deg/sec

2

R

S

t

U

V

V

W

X

Z

(2

At

8
a

5
e

0

¢p

Superscript:

dynamic pressure, N/m 2 (ibf/ft2)

state equation matrix

state equation matrix

time, sec

control vector

velocity, m/sec (ft/sec)

forcing function in state equation

forcing function in observation equation

state vector

corrected state vector

observation vector

predicted observation vector

angle of attack, deg

angle of sideslip, deg

time interval, sec

aileron deflection, deg

elevator deflection, deg

measurement noise vector

pitch angle, deg

bank angle, deg

integral of the transition matrix

gradient (row vector)

transpose

3

Subscripts:

i

2
_, a , 9, 8 a, 8 e

0

Prefix to matrix names:

APR

general index

derivative with respect to indicated quantity, per deg

or per deg 2

derivative with respect to rate of change of angle of

attack, per rad/sec

bias

a priori weighting

Suffixes to matrix names:

I

L

M

N

V

Computer labels:

ALPHA

ALT

AN

AX

AY

BETA

DELTA-A

DELTA-E

DELTA-R

MACH

P

4

inverse

dimensionalization addition

dimensionalization ratio

nondimensional

variation

angle of attack, deg

altitude, m (ft)

normal acceleration, g

longitudinal acceleration, g

lateral acceleration, g

angle of sideslip, deg

aileron deflection, deg

elevator deflection, deg

rudder deflection, deg

Mach number

roll rate, deg/sec

PHI

Q

Q-BAR

R

THETA

V

bank angle, deg

pitch rate, deg/sec

dynamic pressure, N/m 2 (Ibf/ft2)

yaw rate, deg/sec

pitch angle, deg

velocity, m/sec (ft/sec)

1.0

1.0 FORMAT OF DECKS, LISTINGS, AND MODIFICATIONS

In this section, the conventions used for reference to specific cards in the MMLE3

program are defined. The program is maintained at the Dryden Flight Research

Center as an UPDATE (ref. 2) file under the CDC SCOPE 3.4 and NOS 1.4 operating
systems. Users familiar with CDC computers will recognize the UPDATE format and

the FORTRAN extended reference maps (ref. 3). Supplement 1 is a microfiche list-

ing of the MMLE3 program and reference maps. Appendix A contains detailed
discussions of individual subroutines and common blocks.

1.1 Decks and Common Decks

This section describes the format of the card decks of the MMLE3 program.
The format of these decks is as an UPDATE (ref. 2) source file. This format is

used for the relative ease of changing matrix dimensions (see sec. 3.2).

Users with access to UPDATE will find it most convenient to maintain the pro-

gram as an UPDATE library; the card decks provided can be used directly as input

to UPDATE. For users without access to UPDATE, the program COMSUB is provided
(appendix B) to translate the UPDATE source decks into FORTRAN code. Most of

the sophisticated features of UPDATE are avoided, so COMSUB is a very simple
program. Its only function is common deck substitution.

A common deck is a group of cards that can be copied into several different

subroutines. Although the name is similar, ithas no direct relation with FORTRAN

COMMON statements; FORTRAN COMMON statements are one convenient application

of UPDATE common decks. The main advantage of using common decks is in the

ease of making program modifications. If a common deck is modified, the modifi-

cations will automatically apply to every copy of that common deck. Since it is not

rare for a common deck to be copied in 10 or more subroutines, the work of making
program modifications can be reduced by an order of magnitude.

The first section of the MMLE3 cards consists of the common decks. Each common
deck is preceded by an identifying card in the format

*COMDECK common-deck-name

1.2

The MMLE3program and subroutines are placed after the commondecks in the
order shown in appendix A. Each routine (including the main program) is preceded
by a card in the format

*DECK deck-name

This card can be ignored unless UPDATE is used. Wherever a copy of a common
deck is desired, there is a card in the format

*CALL common-deck-name

The program COMSUBsubstitutes a copy of the appropriate commondeck in place
of this card.

1.2 Reference Maps

The subroutines in supplement 1 are followed by reference maps. The reference

maps list the variable names in alphabetical order and give the line number of each

use of the variable names. The line numbers used in these reference maps are the

numbers that appear on the left of the listings every fifth line. These line numbers
are used only in the reference maps; all other references to individual cards in this

report will use the card numbers (sec. 1.3). A complete description of the informatio

in the reference maps is found in reference 3.

1.3 Card Numbers

Except for the reference maps, all references to individual cards use the card

numbers shown on the right of the listings in supplement 1 (columns 73 to 90). The
card numbers consist of an ident name and a number; both are necessary to specify

a card. Most of the cards within a subroutine have the subroutine name as an ident.

Cards with an ident different from the subroutine name are either part of a

modification or a common deck. If the first character of the ident is $, the card is

part of a modification. There are no modifications in the current listing; this de-

scription is included to allow for possible future changes (see sec. 1.4).

If the ident of a card is not the same as the subroutine name and does not begin

with $, that card is part of a common deck. Common decks are described in section i.

Any reference to a card in a common deck applies to every copy of the common deck.

All of the *CALL cards calling for common decks are listed separately, after the list-

ings of the common decks, before the main program.

1.4 Modifications

The MMLE3 program is designed as a working tool that can be modified to fit

specific applications, rather than as an inviolate whole. In addition, it is possible

that modifications will be necessary to correct program bugs (naturally, we hope

not) ° Therefore, this section describes the conventions to be used by any modifica-

tions; these conventions are a subset of CDC UPDATE (ref. 2). Users with access to

1.4

CDC computers will find it convenient to use UPDATEto implement modifications.
For other users, the descriptions and example below should be adequate to define
the actions required to implement any modifications.

Each group of modifications is preceded by a card in the format

*ID correction-set-name

This card defines the ident (sec. I. 3) to be used as part of the card number for any
cards added by this correction set. For the MMLE3program, the convention has
been established that the first character of every correction set name will be $.
Correction set names are limited to nine characters in length.

Insertion of new cards into the program is defined by a card in the format

*I card-number

immediately followed by one or more cards to be inserted The card number is in
the format

ident, number

and defines the card after which the new cards are to be inserted. If the card number
describes a card in a commondeck, the new cards are to be inserted in every copy
of the common deck. Cards may be inserted after any card in the program, including
cards inserted by previous modifications and cards which call for inclusion of common
decks. Cards to be inserted may include cards that call for inclusion of common decks.

Deletion of cards from the program is defined by a card in the format

*D card-number

or

*D card-number- I.card-number-2

The first format describes a single card to be deleted; the second format is used to

delete all cards from card number 1 to card number 2 inclusive. The *D card may be

followed by one or more cards to be inserted in place of the deleted card(s). The

number of cards inserted in this manner does not have to equal the number of cards
deleted; it can be larger or smaller.

Cards beginning with */ are comments and can be ignored.

The following simple example should help clarify some of the ideas of this

section. The correction set reads the time history from a tape with the time in total

milliseconds instead of hours, minutes, seconds, and milliseconds. The dimensions
are increased to allow tape records up to 150 words long, instead of 100.

1.4

*ID $LONGTAPE

*/ READS LONG TAPE RECORDS

*/ TIME IN TOTAL MS

*D RECRD. 2

COMMON /RECRD/ EOFTH ,T (4) ,RECORD (150)

*D READTH. 20

READ (UDATA) ITMS, (RECORD (1) ,I=1 ,NREC)

CALL IHMSMS (ITMS ,T)

Note, in particular, that the card RECRD.2 is changed in both copies of the

common deck, RECRD (in subroutines READTH and THDATA). The original sub-

routines READTH and THDATA are in supplement 1. The routines resulting from the

above modification are shown below; the listing of THDATA is truncated since there

are no changes in the latter part of the subroutine.

100

C

lOtO

50C

SUBROUTINE RF_DIH(INSIAT) READTH 2
RFADTH 3

RFADS ONE POINT OF INPLT IIM_ HISTORY REAOTH 6

IANOARD VERsiON FO CA&D _k TAPE INPUT REJOIN 5

IN,TAT GIVES INPUT STJTbS REAOTH
3 INDICATES rLRST CALL TO RFADTH FOR THIS CASE READTH 7

1 INDICATES SFARCHING FOP A START IIPF, BUT NCT FIRST CALL REAOTH B

INDICATES REACING DAIA READTH q

THIS ROUTINE SHFULD NCT aLTEg INSIAT READTH 10
READTM 11

COMMON I_ILE$1 LCARD, LPUNCHpUPRINT,UOAIAeUTI,UTZ,UIHOUT,UWTeUPLOT FILES 2

INTEGER UCAED,U_UNCH,UPRINT,UOATA,UTI,UT2,UTHCUT,UkT,UPLOT rILES 3

COMMON IINOPTI CARDsTIPE INOPT 2

LOGICAL CARD,TAPE IWCPT 3

COVMON ITNOkDI NRECpZCHAN(OB)_UCNAN(U4)pEXCHAN(2_) IMORD 2

INTEGER ZCHANpUCHAN_EXCHAN IWORD 3

DMMON IRECRDI EGFT,T(_I,RECORD(150) $L_NGTAPE 1

LOGICAL FORTH RECRD 3

INTEGER T RECRD 4
COMMON /TaPPOS/ ITN;REW TAPPOS ?
LOGICAL R_W TAPFOS 3

READTH 17

IFICARD) GO TO]00 REAOTH 18

IF(PEW) REWIND UDATA READTH lq

gEAD(UDATA) ITMS,(RE_CRD{I|,I-I,NREC) SLONGTAPE 2

CALL IHMSMS(ITM_,T) $LG_GTAPE 3

G5 TD 500 REAOTH 21
READ(UCA_OelOO0) Te(RECORD{IIeI-IeNRECI READTH Z2

READTH Z3

FD_MAT(312_I3,1X,7FIO.61(BFIO.¢)) REA_TH Z4

RETURN READTH 25

rN_ READTH Z6

_URklUTIN¢ IHGAIA TPOATA 2

THDJT& 3

kE_ c INrHT II_E HIKTCEIES, FIND_ AVERAGES CF ALL SIGNALS, TFDATA 4
T_DJTA

clOPS WIT u T-1,LCRn DEPE_O ON _ELATIVE nF_R GF Z, (_ AND EXTRA TEDATA

VARIABLES, _CAIES, 8IASFS, CHANKEL h_WBEgSe O_ AVERagES TPDJTA ?

IN THE CbMPPN BL_CKS, T_CJTA 8
RFFE_N_PT TC Z _A_IAPLES THEN E_TE_ TO U ANC EXTRA, TPCATA q

TPDJTA 10

_I_MO_ IAVCunl4/ ZAVG(O_),UAVG(04)gFXAV_| 20)_ZSIG(08}p AVCC_M 2

- USIG(C_)_FXSTG(20}_ZMINM(O_)_LIMINM(041_EXPINW(20)_ a_{COe

ZM_Xu(O_)_UMIXM(Ok)_EXMAXM(2C) _VCCOM 4

CDMMON IB_LINI USEA_G_IISVAReZ(Ug}_L{ O_}_EXIRA(2C)egNFS(_1 BIlIh ?

LOGICAL LIS_VG,IIMVAR _ILIN 3

CoMMoN ICoM/ NC_SEeNPlTeNPTS(I_),IIMLT$(IS) CCM

CbPMOk /FILES/ bCA_D,LFUNCH_UPkINT,UCAT_UTI,UT2_UTHOUT_UWT_U_L01 FILES 2

TNTEGEW LeA;D_UPL!NC_UFPINT_UCAT_;UTI_UTS*ItTHOUT_UWI_UPLCT FILES 3

C_MMO_ /HeAD,G/ I_TL_(SGIe_DATF*ATIMEt HEADNG 2

}IGL_R(2_ C_),XL_B(Z_ OTl_Cq_LAB(?, 04|,E_LAB(?_ ?0} HE_CNG 3

COMMDN It_OkOl NQEC_ZCHAh(OB)_UCH&N(O_}eE%CH_NI 20) INCRO 2

INleGEk 7CH_N,U(_AN,EXCFAN I_[RD 3

_OMMDN /INT_G_I DT,NF_T I_TFGR 2

COMPLY I_AX]_S/ _AXY_PAXZ_MAXU_MAXS_LFX_L_RD NJXIMS 2

CqMMON IMOOCoM/ UM_D MCOCOM 2

LOGICAL UMOp MCDCOM 3

C_MM_N l_CC_Dl EO_TF_T(4),_EC_kD(150} SLENGT_FE]

LDGICAL EnFTH REC_C 3
INIEGFF T gEC_D 4

CEMMO_ /TAPPjRI ITM_REW TX_FOS 2

L_GICA! _W T&PPOS 3
cnMMo_ /T_D_TA/ _TC(_9)_ETL(IS),THINePRINII,MAXREC, TECIT_ ?

- ZBIAS(On)_L_I_(06),EXBIAS(2C)_ZSCALP(O8)_L!SCALE(04)_ TCDATA 3
- rx_CaL{ 2o) TCDkTA

INI_G_ THIF,STC,ETC TOD_TA 5

LJC]C_L P_I_TT TCD_x& 6

THCAT_ 23

LP_ICAL F_RST T_OAT_ 24
TFD_TA 25

1.5

1.5 Tapes

The following format will be used for tape transmittal of the MMLE3 program

unless explicitly requested otherwise. The availability of tape copies of the MMLE3

program can be ascertained by writing the author.

Tapes are nine-track 800 BPI labeled tapes. The VSN of the tape is MMLE3T.

The label is American National Standard Institute (ANSI) standard with the name

MMLE3. All data are ASCII-coded card images. (EBCDIC code is available on re-

quest.) Each card image is a fixed-length 80-character record. Records are

blocked in fixed-length blocks of length 1200 characters. Each block contciins

exactly 15 records with no padding; records do not span blocks.

Each file of data on a tape is terminated by a card with "END-OF-FILE-nn" in

the first 14 columns. The nn is replaced by the file number. The remaining 66 col-

umns of the card are filled with dashes. Actual system end-of-files are not used

because of possible incompatibility between computers.

There are 12 files of data on the tape. The first file is the UPDATE source cards

for the MMLE3 program as described in section I.I. The second file is the UPDATE

source cards for the EISPACK routines used by MMLE3. The third file is the CDC

segmentation directives. The fourth and fifth files are the COMPUN program and

the template used by COMPUN as described in appendix C. The sixth file is an

alternate template for COMPUN, which results in a correction set for CDC UPDATE

instead of a complete set of common decks. The seventh file is the COMSUB program

1.5

described in appendix B. The eighth and ninth filescontain the program modification

and input cards for the one-dimensional check case listed in appendix D. The 10th

and llth filescontain the program modification and input cards for the two longitu-

dinal aircraft check cases described in appendix D. The 12th filecontains the input

cards for the lateral-directional standard aircraft test case described in appendix D.

A microfiche listingof the tape contents will be supplied with the tape. The

totallength of the tape is approximately I0,400 card images.

The following short program can be used to pick a filefrom the tape. The file

number desired is specified on a single card in 110 format. The tape is assigned

FORTRAN unit number II and the filerequested is written to FORTRAN unit num-
ber 12.

PROGRAM PICK(INPuTJCUTPUI_PMLE3T,FILEN_

- TAPFI°_NPU1,TAPc3-GLIPU1,TAPE*u-MMLF3I,TIPEIx-FILENI

PICK A "FILe" _FF qF MMLE3i TAPE AND COPY iT TO FILFN.

INPUT IS A SINGLE CARL WIIH THE DESIRED FILr NUMBER iN FCR_AT llO.

INIFG[R UPFADgUPRLNT, LINpUOUT

REAL CARD(ZO)pFND(3|

OAIA ENuI_HEND-p4HOF-F_HLLE-I

DATA URE_U/]IJUPRINT/31,UiN/LOIpbOU_II11

READ (UREAO_BZO&) NPICK

WDITE (UPRINTe8300) NP1CK

C *o_t*_ewB_*e*_*** SKIP PRECEEDING FLLES,
REWIND I_IN

qSKIP • NP_CK-1

IF (NSKIPeLF.Q) GO TO 3GQ

ub 2'_ ZFILE • I _ NSKIA
DO ZvO ICAED • I , 200UO

IF (CARD(II.EO.cND(x) .AND. CARDtZ).EQ.cND(Z) oAND.

CARO(3I.EQ.cND(3)| GO TO]_0
LOU CONTINUE

%_0 WR_TF (UPglNT_u_) CAKD(_)eLCARD

Z03 C3NTINUE

3vO _ _00 ICaRD • i • 2OCuO

R_AD (UIN_bgOu) CARD
IF (CkED(L).EQ.END(1) ,AN_. C_RD(_I.cQ._ND(2) ,ANn,

- C_RD(3)eEQ. ENO(3)) GO T_ 9cO

WR_TE (UOUTe_q(_O) CARD

k0_ CONTLNUE

v wRITE (UPRINT,B3uZ| C_kD(k),ICARD

C

• I00 PDRMAT(IIu!

91_,d EDRMAT("JF/LE NUWBER",13_" REQUESTED FR_ IHE TAPE.")

830T FDRMAT(" FILE ",A2, _ _KIPPED."•Ibe " CAR0$ IN rILE.'}

@3_Z FDRNAT("OFILE "_AZ•" CbPIEO.",Ib," _AwDS IN FILE_")

_ F_RNAT(Z_A_)

STUP

EN_

10

2.0 IMPLEMENTATION CONSIDERATIONS

2.0

This section discusses the considerations in implementing the MMLE3 program

on various computer systems. The program was designed with generality in mind,

so code peculiar to specific systems was avoided. The MMLE3 program has been

checked out on CDC computers with SCOPE 3.4 and NOS 1.4 operating systems and

on IBM computers with the OS/360 operating system. It has also been run on Univac

and Harris equipment. It should not be difficult to implement on any large computer

system with a FORTRAN IV compiler and a CalComp plotter (ref. 4).

2.1 FORTRAN

The MMLE3 program uses mostly ANSI standard FORTRAN IV (ref. 5).

character data are stored four characters per word for machine generality.

statements used that do not conform to ANSI standards are described below.

on most large computer systems accept these usages.

All

The few

Compilers

The program card, which is nonstandard, is necessary on CDC systems to

define the files to be used. This card appears only in the main program and should

be deleted if it is not appropriate to a particular system.

Nonstandard subscripts are used in several places. Most large system com-

pilers accept the forms used. If a particular compiler does not accept them, the

nonstandard subscripts can be replaced by dummy variables, defined immediately

before their use.

Unsubscripted array names are used in data statements throughout the program.

This usage, although nonstandard, is very common. The equivalent ANSI standard

forms are quite tedious but can be substituted if necessary.

ANSI standard FORTRAN restricts the assignment of values to formal parameters

in a subroutine if two or more formal parameters are associated with the same actual

parameter. The MMLE3 program does not abide by this restriction. The restric-

tion is a quite conservative way of avoiding potential problems in optimizing com-

pilers. The specific usage in MMLE3 is not prone to such problems. The violation

of this restriction in the ANSI standard cannot be detected at compilation time and

thus does not result in compilation errors.

Quotation marks are used in many subroutines to delimit Hollerith fields in

FORMAT statements (never in DATA statements). Most compilers accept quotation

marks or some other character in this role. A simple character translation program

can be used to change the quotation marks to acceptable characters if necessary.

The use of NAMELIST input is the most serious potential problem of FORTRAN

compatibility for MMLE3. Although NAMELIST input is nonstandard, it is available

on many computer systems. If NAMELIST is not available, a substitute type of input

will be necessary. If such a substitute does not embody many of the general features

of NAMELIST, the program will become very cumbersome to use. In particular,

because of the large numbers of variables and options available, it is desirable to

11

2.2

have default values that are used if no values are input. The user then needs to
set only the values that are different from the defaults. It is also desirable to have
the input variables identified by name instead of position, because variable names

are much easier to remember than positions assigned on the input cards.

The program does not depend on memory being initialized to 0. However, matrix
elements which might not be defined are tested to see if they contain the special flag
value "TEST" (see sec. 3.1). Therefore, memory must not be initialized to infinite
or indefinite values on computers that have such values.

2.2 Files

Input and output conventions vary from system to system; therefore, some
flexibility must be built into any program that will be used on different computer
systems. All input or output in MMLE3 uses the variables in common block FILES
for unit numbers. The values of these variables are set in subroutine VARDEF.

The unit numbers can be changed as desired for compatibility with various operating
systems; for CDC systems, it will be necessary to change the file names in the pro-
gram card to correspond to the unit numbers used.

Descriptions of the files used by the program are given in reference 1, section 3.2.
On IBM systems, the following DD cards are samples of those necessary to define
the files. It is assumed that a cataloged procedure is used that defines the card
reader, card punch, and line printer files. The file numbers and record lengths
in these samples correspond to the values currently used in the program.

//GO .FT02F001 DD SYSOUT=B

//GO .FT04F001 DD DISP=OLD ,UNIT=2314,VOL=SER--volume,

/ / DCB= (RECFM=VSB, LRECL=420 ,BLKSIZE=4204) ,DSN=name

//GO. FT07F 001 DD DISP=NEW ,UNIT=SYSDA , SPACE= (CYL, (i0,2)) ,

// DCB=(RECFM=VSB ,LRECL=148,BLKSIZE=4444) ,DSN=INTERNAL

//GO .FT08F001 DD DISP=NEW ,UNIT=SYSDA ,SPACE= (CYL, (i0,2)) ,

// DCB= (RECFM=VSB ,LRECL=I92 ,BLKSIZE=3844) ,DSN=TOPLOT

//GO.FT09F001 DD DUMMY

12

or

//GO .FT09F001 DD DISP= (NEW ,CATLG) ,UNIT=2314 ,VOL=SER---volume,

// SPACE=(CYL, (5,1),RLSE),

// DCB= (RECFM=VSB ,LRECL=148,BLKSIZE=2964) ,DSN=THOUT

2.3

//GO. FT10F001 DD DISP= (NEW ,CATLG) ,UNIT=2314 ,VOL=SER--volume,

// SPACE=(CYL, (5,1),RLSE),

// DCB= (RECFM=FB ,LRECL=80 ,BLKSIZE=3200) ,DSN=WTDATA

(DISP can also be OLD)

//GO. FT13F001 DD DISP= (NEW ,CATLG) ,UNIT=2314 ,VOL=SER--volume,

// SPACE=(CYL, (5,1) ,RLSE) ,DSN=PLOT

(on some systems replace FT13F001 by PLOTTAPE)

On CDC systems, no special control cards are needed except those to attach, request,

or catalog any permanent files or tapes.

Core space can be conserved by lowering the I/O buffer sizes. The program

uses the scratch files UTI and UT2 (7 and 8, respectively) extensively. If the
buffer size for these two files is lowered too much, execution time will increase. The

buffer size of file UDATA (4) can also affect execution time if this file is long.

The remaining files are used seldom enough that even very small buffer sizes will

not affect the execution time. On CDC computers, buffer size is specified directly

on the program card. On IBM computers, the total buffer size is determined by

the block size and number of buffers specified on the DD cards.

2.3 Segmentation or Overlay

Efficient operation of the MMLE3 program requires the use of segmented or

overlaid loading. The program requires over 200,0008 words of core to execute on a

CDC computer if segmentation is not used. The use of segmented loading reduces the

core requirements to approximately 54,0008 words. This large difference in core re-

quirements results because the program was written to take advantage of segmentation.

The segmentation structure for MMLE3 is shown in figure 1. Each box repre-

sents a segment. The name assigned to the segment (usually the name of one of the

13

2.3

subroutines in the segment) is underlined at the top of the box.

of the major functions accomplished in the segment follows.

A brief description

GETSET

EDIT

Input, except
for matrices and

time histories

Program
initialization

and predicted-

derivative input

i • " -
______J___

TITLES

Case input

and setup

..... __

MATSET
Matrix and time

history input,
initialization for

estimation

MMLE3

Main program

t
GET

Utility routines

and common

blocks not used

in plotting

_I

[HPLOT

I

Ti me history

plotting
l

1

NEWTON

Newton -

Balakrishnan

iteration

L
[

GIRL

Ti me history

and gradient

i computation
J

NOTGIRL

_Aatrix routines

not used

in GIRL

[1 _
r] 1 1

REAT

Computation of

yste m matrices

KALMAN UPDATE

Updating of

esti mates

SUMOUT

Summary

information

output

Solution of

Riccati equation

and its gradients

NAMIN

NAMELI ST input

system routine

I AD2 Ii
Matrix ,

routines

AXES

Plotting
routines

[
I ElCENG

" Eigenvalue-

i eigenvector
routine

1 --1
F ELMHES
I

I Balancing and i

i transformation to

upper Hessenberg form
i

mm

F --"

HQR

Eigenvalues

only

HQR2

Eigenvalues
and vectors

14

Figure I. Segmentation structure.

2.3

The segmentation directives required to implement this structure on a CDC
SCOPE 3.4 system are given below. The TREE and LEVEL directives define the basic

structure. The INCLUDE directives assign subroutines to the appropriate segments,
and the GLOBAL directives assign the common blocks. All of the subroutines and

common blocks of the MMLE3 program itself are explicitly assigned by these directives.
System routines and common blocks are not included, except for the CalComp plotter
routines and the NAMELIST input routine NAMIN--. The name of the NAMELIST input
routine will be different on different systems. On some systems, additional directives
may be required to assign some of the system routines and common blocks to the
root segment.

t M_L_I SEGMEHTA[IEN DIRECTIVES 31 JUL 80 RICH MAINE

TREE HML_3-(GETSETpNOPLOTSpTHPLOT)
TREE GET-(TNTREE, DOTREE]
TREE TITLES-(EDITeNATSET)

TREE NEWTON-(GTREE,NGTREE)

TREE GIRL-tKALMANJREAT)

TQEE NOTGIRL-(UPDJTEpSUMOUT)

OPLqT
INTRTC

OOTRCC

_TRPE

q_TRF_

MML_

_TSET

GET
_FT

C_IT

NATSET
HAT_rT

4ATSrT

KAqMA_
REAT

RCAT

NqTGIRI
!IP_ET¢

I¿I_ITc

_ U_gtlT

THDL3T
t

GET
_ET

GFT

_T
TTTLES

_ATSFT
NE_Tq_

NrwTq_

_TRL

_TDL
KAtMA_

INCLUDE

TNCLL'DE

[flCLUOE
T_CLUOF

I_CLUDE
TNCLUDE

INCLUOE
T_CLUDE

Tq_LUDE

T¼CLUDE

T_CLUOE
INCLUDE

T_CLUDF

T_CLUOE

TqCLUDE
T_CLUDE

GLOBAL
GLOBAL

_LOBAL
_LOBAL

_LJBAL

_Ld_AL

_t _B At
_L3BAL

GLOBAL
GLOBAL

_LOBAL

GLOBAL
_LOBAL

GLJBAL

MHLE3*ABENO,MIL
GETSETpVARDEFegTIN

GET_GETLAB_HEAD_LOCATEeSET_SET1,SETZ_$PIT_SPITEP,ZGT1
ZOT2

EDIT,DIGIT,USERIN

_ATSET_ALLO_*AVERAG_CO_PATeCO_IN_CDNSTR_GVALVE,HARDC
INTEgP_LOADEO_ATDEF_R_TLD_ATND_MTLOAO_ET_ONCE

READTH_SETCON_THDATAeTHMODeVARY,WIDEF_WTTRAN

KAL_AH_GRADK*GRADP_LYAPCB_RICATC
_EAT_CALLA_D_I_OIN2_EATeGRAD_GRADIC_INIT_OBSE_V

SPIDIN_V_ADDeH&KFLeHAKFH_AKEVW_THOUTeUINIT
REDUCE,SINV,SSIffF_

UPOATE*APRAD_*_IAS_DFACTeFADJ_FLINIT_OVE_flV_ULT
RESXOS

SUqO_TeCRgMER*CRSETeERRTHPeO_TP_NePLOp
THPL_TtIHHSHS

BUF*CC_OI_ALL_FILES_HE_CNG_INTEGR_HAXCON_HAXIM_AXIMS
NODCO_OUTOPT_SIZE_TA_P_S,TCPLOT

FLCONO,GFDEFS

AVGCOP_BILIN_DETERN_DI_AT_ECO_FCUH_GICOH_GRSIZE

ICOND_APCOMe_AT_ATe_AIRIXeDBSRV_PHICOHeSOFCUHeSUNSAV
TOGZRL

ZNERTSelNSTR,LONLAT

IN_AT_INOPT_INORD*HATIN_A[LAB_1ODATA_UVCO_
RECRD

A_C_R_OUHCU_DUqVEC_ERL|ST,_RADS_GROCO_tKCO_,PBCO_
SUMCO_XSUMS
TOGRADe_IASE$
GRAV

RICCON
_ U_3UT

t PnR

_I_TH

kDn
Ann

_xcS
&_FS
e

_4OR

_QR?
ql

GLOBAL CRNAT
_qRATCH STURAGE AS NEEDED

_LUBAL GLOBAL

LEVEL

TREE NA_IN

INCLUDF NA_IN-_|DIG_T_RDWCOL

TREE ADD

eNCLUDE ADD*AODPAR_D_ULT_GETP_GETPAR_IDENTI_NV_AKE_ULT

INCLUDE MULTT_S_ULTeSUBeSUHULT_SYM_TRANSPeUNSETeZNULT_ZOT

TREE A_E$

THCLUDE AXES*LINES_PL10&TeSCALE2eSYMBL4eTIIPLT
T_CLUDE FACTDR*NU_BEReSY_B6L

TREE EIGENG-(ELHHESeHOR,HORZ)

TqCLUOE ELMHE_eBALANCeELTRAN
INCLUDE H_R

_CLUOE NQRZ_RALRAK

15

2.4

The statement GLOBAL GLOBAL in the above directives declares that the common

block name GLOBAL will be placed in the root segment so that it can be accessed

from any subroutine. The program as published does not have a common block

named GLOBAL. This statement is provided in case the user needs an additional

common block for some temporary modification. The user can define the common

block GLOBAL as needed, and the above directives will insure its proper placement

in the segmentation structure.

The following directives implement essentially the same structure on the CDC

NOS 1.4 operating system. The routines not mentioned explicitly and all of the

common blocks are automatically assigned by the system.

qOaLgTS
INT_F_

gOT_tP

_T_E_
MGTQE:
$

c, ETSPT

r, rT

WAT_T

_IPO&TE
v AL wAN

_p&T

_nD

_cs

&WES

_LwHcS

M_LE3 SEGMENTATION DIRECTIVES FOR NOS. 12 SEPT 80 RICH _AINE.

C_MP_N
T_EE NMLE_-IGETSETJNOPLCTSpT4PLOT)

TREE GET-IINTREEeDDTREEI
TgEE TIILES-(EOITeNATSET)

TREE NEWTCN-(GTREE,NGTREE)

TQEE GIRL-{KALMANeREAT)
TREE SiNV-(UPDAT_pStlMOUT)

INCLUDE VkRDEFpWTIN

INCLUDE GFTLABJSETI,SETZ,$PITeZOTIpZCT2

Y_CLUDE ONCEpMTLOADpT_DATA, MATEEFeCD_PJIp_LLOW

INCLUDE AP_AD_pBIAS,DFACT_ELIMIT_MVMLLI_RESI_S

INCLUDE GRJDK

INCLUDE DIW2,GRAD,GRADIC,INIT_OBSERV,SPIDIM,VMaDD_MAKEVW_THOUT

LEVEL

TREE NAMIN-

IqCLUDE IDIGIT,ROWCOL

TQEF kDD

INCLUOE AOO_ADDPAR_DMULT_GETP, GETPkR_IUENTI_INV_MAKE_MULT

'_CLUDE _ULTI_SMULT_SU%SUMULT_SYM_T_aNSPeUNSET_ZMULT,Z_T

T_EE AKES

THCLUDE AXES,LINPStPLT_AT,S_ALEZ_SYMBL6,TITPLT

IqCLUDE F_CIOR_NUMBER,SYMBOL

TOtE EIGENG-(ELMHr¢_HQR_HQR_)

TqCLUDE 9IL&NC_ELT_AN

TWCLUDE _LBAK

CqD

If MMLE3 is to be run without segmentation or overlay, several small changes

will reduce the amount of core required. First, subroutine WTIN should be removed

from the MMLE3 program and run as a separate job; alternately, the dimensions in

WTIN could be decreased. Second, the dimensions in subroutine THPLOT could be

decreased, at the expense of an increased number of disk reads. Third, some of

the large common blocks from different segments could be equivalenced. Fourth,

subroutine HQR2 could be modified to include HQR as a subset.

2.4 EISPACK Routines

The MMLE3 program uses the subroutines described in reference 6 for obtaining

the eigenvalues and eigenvectors of matrices. This subroutine package (EISPACK)

is widely used and well documented. The EISPACK routines used by MMLE3 are

16

2.5

BALANC, BALBAK, ELMHES, ELTRAN, HQR, and HQR2 from release 2 of EISPACK.

Listings of these EISPACK routines are included in supplement 1, in case the user's
installationdoes not have the EISPACK release 2 library available. The listings

include brief descriptions of the functions and usage of the routines.

The EISPACK routine BALANC contains a machine-dependent variable RADIX.

This variable should be defined at card 64 to be the base of the machine floating

point representation. For CDC machines, this value is 2 (as shown in the listing
in supplement i). On IBM machines, RADIX should be 16. RADIX is used to insure

that the arithmetic in subroutine BALANC will be exact, with no rounding error.

Subroutines HQR and HQR2 contain a machine-dependent variable MACHEP.

This variable should be defined at cards HQR.63 and HQR2.87 to be the smallest

positive, floating point number which, when added to 1, gives a result not equal

to i. For CDC machines this value is 2-47 as shown in the listings in supplement 1

Different values would be used for other machines. MACHEP is used in convergence
tests.

2.5 Plotting

High-resolution time history plots are needed to adequately evaluate the results
from MMLE3. Line printer plots are usually inadequate. The MMLE3 program uses
CalComp plotter software (ref. 4). If a CalComp plotter is not available, the routines
calling the CalComp software must be changed. The only CalComp subroutines
called are PLOTS, PLOT, FACTOR, SYMBOL, and NUMBER. The calls to the CalComp

software are in the main program, subroutine THPLOT and subroutines AXES, LINES,
PLTDAT, and SYMBL4 called by THPLOT.

If the plotting subroutines are rewritten, it is important to recall that MMLE3
stores labels four characters per word for machine generality. Therefore, each
word must be treated separately. Subroutine SYMBL4 is an example of this type of
treatment. On a computer that stores four characters per word, SYMBL4 is not
needed because a direct call to SYMBOL will work as well. However, the direct

call to SYMBOL would not be transportable to machines with more than four charac-
ters per word.

The functions of the CalComp subroutines will be described here so that the

user can adapt the program to other plotting software.

2.5.1PLOTS (BUF, NBUF, UPLOT)

Subroutine PLOTS initializesthe plotting software. BUF is a scratch storage

area used by the plotting software, and NBUF is the length of the BUF vector in

words. Some CalComp implementations do not require a user-allocated buffer, in
which case BUF need not be dimensioned. UPLOT is the FORTRAN device number

assigned for the plot file. Some systems ignore UPLOT and assign a system-specified
filename.

17

2.5.2

2.5.2 PLOT (X, Y, IPEN)

Subroutine PLOT moves the plotter pen to the position (X, Y) referenced to the

current origin. IPEN should be -+2, -+3, or 999. If the magnitude of IPEN is 2, the

pen is down during movement, thus drawing a line. If the magnitude of IPEN is 3,

the pen is up during movement. If IPEN is negative, the origin is redefined to be

the pen position after the move. The value of 999 for IPEN is a special call to close
the plot file.

2.5.3 FACTOR (FACT)

Subroutine FACTOR enlarges or reduces subsequent plots. The size of subse-

quent plots is FACT times the "normal" size. Calls to FACTOR are not cumulative;

e.g., a call with FACT=. 25 followed by a call with FACT=.5 makes subsequent plots

one-half of the original size, rather than one-eighth. The program assumes that the
original plot size takes all values in inches.

2.5.4 SYMBOL (X, Y, HGT, I, ANGLE, N)

Subroutine SYMBOL draws text or symbols. There are two branches in sub-

routine SYMBOL, depending on the last argument, N.

If N is positive, N characters taken from the vector I (in A format) are drawn.

X and Y are the starting coordinates of the lower left-hand corner of the first

character, and ANGLE is the angle at which they will be drawn. If X or Y is 999,

the characters are drawn starting at the previous pen location in the corresponding
axis. HGT is the height of the characters drawn.

If N is negative, a single symbol is drawn, specified by the integer I. The

list of symbols is given in reference 4. The interpretation of X, Y, HGT, and ANGLE

is the same as whenN is positive. IfNis -I, the pen is up during the move to loca-

tion (X, Y). If N is -2 or less, the pen is down. The symbols for I values from 0

to 13 are drawn centered at the location (X, Y); all other symbols treat (X, Y) as
the lower left-hand corner of the symbol.

The value N=0 is not used by the MMLE3 program.

2.5.5 NUMBER (X, Y, HGT, A, ANGLE, N)

Subroutine NUMBER draws the value of a floating point number. X, Y, HGT,

and ANGLE are identical to the corresponding arguments in subroutine SYMBOL. A

is the floating point number to be drawn. N controls the format used. If N is greater
than or equal to 0, N digits after the decimal point will be drawn. If N is -1, the

integer part of A is drawn with no decimal point. Values of N less than -1 are not

used by MMLE3. All numbers drawn are rounded rather than truncated values.

18

2.6

2.6 Date and Time

Calls to the DATE and TIME subroutines are provided to help in identifying

printed output and plots. Naturally, these subroutines are machine specific. If the

system does not supply these functions, dummy routines which return blanks can be

used. The calls to these routines occur in subroutines TITLES and PLTDAT. Any

other useful identifying information may be substituted in these places, if desired.

2.7 Assembly Language Routines

The MMLE3 program is coded entirely in FORTRAN. No assembly language

routines are included in the listings of supplement I. The program spends a

considerable portion of its CPU time in three matrix multiplication routines--MULT,

SUMULT, and ZMULT. These routines are quite short and simple. It is, therefore,

worth considering the use of assembly language replacements for these three

routines in order to decrease the program run time. On a CDC Cyber 70/73, assem-

bly language (COMPASS) versions of these subroutines run in about one-half of

the CPU time required for the FORTRAN routines. This results in a decrease in the

overall program run time of about 20 percent. Assembly language replacements

for other subroutines are not generally worth the effort.

Listings of the COMPASS routines are shown below ° The macros ENTRYP and
CALL used in these routines are also listed.

19

2.?

]n_NT MULT

CJMMCNT MAIDIX MI'LT;PLICATICN C=A*_

USF DATA

X nL I n

sl BSS la

JJ BSS I m

TX BSC l

J _c5 Ig

Kv "5S 1 _

ENTRY ° MUtT

SAV_ C_QMAL pAR_MFTCFS

_N]IIALI

GCT r

LPqn_

tOOPJ

S&2 &_+lq

SA3 A2+IB

BA7 X?

SA6 APGLI

SA? APGL2

BX6 _3

SA_ ARGL3

CALL GET,IO,_AX,|I_JJIpA_GLI

CALL GEI,fO, MI_,JpKK)jJ_GL2

CALL SFTI_(OJPAX,II,KW},A_GL3

VALUF$ OF J AND JJ

A J

$J_ JJ

IX0 x_-Y3

ZR _O,GbT[

CALL AEE_

ZE REGISTPRS _0k LOuPS

SAI mRGLI A

Sw3 A_GL3 C
S_I -1 -I

SB7 X_ JJ
$&_ MAX

SnP x4 MA_

S_3 _4 MI_

SB _ x;+_l 11-1

_A¢ KK

C X KK

S_ B4-81 I-I+1

SP6 mO J-O

SXe BO

SA_ X7 A
SA_ XZ+Bb p

FX_ X_X5 AlP

FWD X6+_ +t

5X7 X7+82 STFP A

LT _,=7_LuOPj

NX_ X6

A6 X+B4 =C

L1 P4_5, LGOPIK
S_4 _ I=O

_XO X0+BI K-K+I

.X2 XP+B3 _TEP B

_Y3 x3+R2 STEP C
NZ XO_LOOPIK

FQ QFTURN

EN_

20

2.7

Tn_T SUNLtLT

C_MFN] MA]RIX _ULT C-(A¢)¢_ + C LCWtk TPIA_I'LB_
* i LOOP _UNS BACKWARDS FkOM Ii T_ I TO SaV_ k @ FE_ISTFR

USF DaTA
Mkx DSS IB

vw BSS]B

IT nS$ 1B

J _S 19

PLE_ BSS in

FNIRYP SUMUL_

* SAVF FOPWAL PA_AMFTPRS

A _l+In

$_3 _?+I _

RX_ Yl

_X7 x2

A _LJC

SA7 BLCC
Bx_ w3

SA6 CLqC

CALL GET,IO, PAY,KKpil),ALOC

CALL GfT,IOJPIX,I,J)*CLCC

* INIIIALIIE REGISTER5 EbP LOGP

SA1 MAX XI-MAX

SA? MIX

SA_ MR

S_5 lI

SB7 X_ B?-KK

TX_ X3*W5

SB_ Xh B_-MIW*II

583 X_ _3-_IX

S_I -I ql--I

SA3 BLOC

IX3 X3°W1 X3-ADDR(@)-MAX

5B2 X3 82-X_

5A2 CLOC

SA_ aLCC

x5 xs+B1 (lI-]

IX? X2+X5 X?-ADDR(C(II,I)!
IXC xsexl

IxO xo+x_ XO=ACDR(A(Z_IZ))
Sn_ 0

tO_OTJ SA5 X_¢O5 ClI_d)

X x5

SB_ 80

S_Z XI_B2 _TFP B COLUMN

LC_CPW SA_ XO+BB A(K_I)

_X5 X_x5

FX6 XS+X6 +C

NX6 Xb

SB_ BB-RI KtK+I

LT Bb,BT,LCOPW

SA6 XZ÷B5 =C(I,JI

SB5 BS+R3 STEP C COLUMN
LT BS_Bk_LOOPIJ

S_¢ B4-B3 REDUCE J LIMIT

_B5 _0

]x_ XO-XI STEP A C_LUMN BACKWARDS

S_? X3

Sw2 x2-1 STEP C RCW BACKWARDS

LT BO,Bk, LQOPIJ
EO RFTUQN

END

21

2.?

InE_T 7MULT

LbMMENT C=C +AeB TA_E3 ADVA_lJ_E EF STRUCTCRF FF A

USE DATA

VAX BSS ZB
IT B$S I_

JJ _S 1B

MIX _S$ 1A
J _SS 1B

AVE fl$S 1B

CNF DATA 1,0

FNTR YP _MULT

* SAVE _RMAL PARAMETERS

SA? AI÷IB

SA3 AZ+lfl

8xb Xl
ax7 X2

SAb APGLZ

$A7 ARGL_

PX6 X3
Skb SAVEC

CALL GET,IO_MAWpII_JJltARGLI

CALL GET,(O,PIX,J,KK),ARGL2

* CCMPAEE VALUES OF d _ND dJ

SA3 J

SA4 JJ
IXO X_-X3

ZQ XO,GOTC
CALL AeEND

* INITIALIZE RFG|ST_D$ FOP LOGPS

GOTO SBI -1

SA? MAX

SBZ XZ

SA4 WK

Ix4 XZ*X4

SB7 X4
_A5 _J

SX5 X_÷BE

SA3 ARGLZ

IX7 X3÷XS
Ix5 xz*x_

SB5 X5

SA_ ,T
SA? xS*ql

SBb Bg+A2

SA3 SAVEC

$B3 A?

_XZ _3+B3

P_O X?

5A3 MIX

$83 X3

SA1 ARGL1

_A1 Xl
Sk4 ONP

NWI X4

LCI_PTJ

t

LODPI

Se,O

SB4 BO
SA3 Al+_b

ZR X3,$40

SA5 X7

IX4 X3-Xl
NZ XCtLOuP_

5A4 XZ+B_

FX_ X4÷X5

Nxe Xb

A6 XZ+B

S_4 BA+BZ

SA_ AS+B3

LT,B_,B?,LOO¢I

SX? X?÷B1

S_6 Bb÷BI

GE Bb,B_tLODPId

B1=-1

B2=PAX

B7=KKtMAW

X7=LOC(BIJJ,1))

BS-(JJ-1)_M&X

k?-II-1

Bb=(JJ-I)_MAX + (II-1)

X_-LOC(C(II,1))
XO=X?

B3-MIW

AE-LOC(A(I,I}I

INITIALIZE IW

AIJ

INITIALIZE B (J_ - JJ)

C(IK) FRLM MEMCRY

C ÷ B

C T,_ MPMORY

IK=IK÷MAW

JK-JK÷MI_ AND BtJK) FRCM MEMORY

DECREMENI ROW CF C

DECEEMENT ROW OF A

22

2.'7

LOOP2

585 B_-BZ

SB6 AZ4B5
SX7 XT+RZ

8X2 XO

GE B_pSOpLOOPIJ
EO RETURN

$A4 XZ+B4
FXb X3*X5

FX& X6+X4
NXF X&

SA6 XZ+B4

SB4 B4÷BZ

SA5 AS+B3
LT,BCp_7mL_OPZ

FO $40

END

CECREMEN1 COLUMN OF J

0ECREMFN1 ROW CF B

RESET ROW DE C

C(ZK) FROM MEMORY
A*B

+C

C TC MEMORY

IK=IK÷MJX
JK=JK+MIX AND fl(JK) FROM PEMOPY

ENTRYP

TRACE,

$AVEAO
RETURN

NAME

ENTRYP.

NCALLS.

LALL

NJNE_

ARGLDEF

AR_NA_

NAMEO

ARGLDEF

NGNAM

NAV_D

ARGLDE¢

NCALLa,

+

IDFNT MACROS
_TEXT

MACRO NAME
ENTRY NAME

USE 0

VFO kZITL_NAME
_FD 18/NAME

BSS Z

SA5 SAVEAO

SAO X5

EQ e+AO0000_

Sxb AO

SA_ SAVEAO
EQU NAME

SET 0

ENON

MACRO SUBJARGL,ARGNAM
LOCAL NONAM

IEC NE,eARGNAMe*

SA1 ARGNAM

IF -DEFpARGNAM

USE ARGLISTS

ASS 0

ELSE
IFC NE p*ARGL**

SA1 NONAM

USE ARGLIST$
ASS 0

ENDIF

TRP ARGL
VFO 601A_GL

_RP

BS$/ I

US_ ¢
FNDIF

SET NCALLS,÷I

gJ =X_$Uq
VFD L21NCALLS.,1EIIRACF.
FNDM

ENO

23

2.8

2.8 Small Computer Systems

This section discusses the implementation of the MMLE3 program on small

computer systems. The program is oriented toward large systems with such soft-

ware features as NAMELIST input and CalComp plotter routines. Scratch disk space

is assumed to be abundant. Finally, the program structure is optimized for seg-

mented or overlaid loading, without which the core requirements would be quite large.

The essential heart of the program, however, is fairly compact. By sacrificing

some versatility and convenience features, the program can be reduced to the point
that it will run on a minicomputer. Several suggestions for such reductions are

made below. The specific reductions chosen will depend on individual requirements

and capabilities. Several of the suggestions involve eliminating subroutines. This

can be accomplished either by actually removing the subroutine and all calls to it,

or by replacing the subroutine with a dummy consisting just of a return.

Several of the suggestions will be recognized as replacing overlaid loading by

a less automated equivalent--dividing the program into separate jobs run in the

same core.

2.8.1 Matrix Dimensions

The most obvious saving is in reducing the maximum matrix dimensions as

discussed in section 3.2. The dimensions in the published program are larger

than needed for many applications, particularly applications appropriate to mini-

computers.

2.8.2 Predicted-Derivative Input

The predicted-derivative input routine WTIN is the first candidate for reduction.

In a nonoverlaid load, WTIN is extremely wasteful of core. The simplest solution

is to eliminate WTIN from the MMLE3 program. WTIN can be run (ifit is needed at

all) as a completely separate program simply by replacing the subroutine card with

a program card and replacing the return with a stop or by writing a driver that does

nothing but call WTIN. The only communication between WTIN and the rest of the

program is the file UWT created by WTIN. This file can be saved on disk or copied

to cards. The UWT file can also be easily created without using WTIN for many

applications. Reference I, section 4.2.2, describes this file.

An alternative to eliminating WTIN is to reduce the size of the 20 by 20 matrix

in WTIN and/or store it in common blocks used elsewhere in the program for other

purposes.

For larger reductions, the UWT file can be eliminated. Subroutines WTIN,

WTDEF, and WTTRAN would then be unneeded, as well as the buffers and disk space

for the file.

24

2.8.3

2.8.3 Plotting

Time history plots are by far the most useful "frill"of the MMLE3 program. In-

deed, this frillis almost a necessity for analyzing real flight data. The plotting

routines and associated system software use a large amount of core in a nonoverlaid

environment. At the cost of some inconvenience, the time history plots can be cre-

ated by a separate job.

To remove the time history plotting from the MMLE3 program, delete the sub-
routine THPLOT and the call to PLOT at card MMLE3.71. Subroutines AXES, LINES,

PLTDAT, SCALE2, SYMBL4, TITPLT, and the CalComp routines are all called from
THPLOT, and are thus also eliminated.

Subroutine THPLOT expects the time history data on the scratch file UT2 and
information describing the plot options in common blocks COM, HEADING, INTEGR,
SIZE, and TOPLOT. The values in blocks FILES and MAXIMS must also be defined.

If THPLOT is run as a separate program, it is probably more convenient to redefine
the options and information in the common blocks than to communicate it from MMLE3.

The time history data of file UT2 can be stored on disk or tape. Alternately, these
data could be punched on cards (in which case file UT2 is not needed in MMLE3).

If disk or tape storage is unavailable and the number of cards required impractical,
the data of file UT2 can be recreated by a driver routine for THPLOT by using the
final estimated system matrices. This would require a moderate amount of coding
most easily done by cannibalizing subroutine GIRL, throwing out parts used only
for the gradients.

2.8.4 State Noise Option

Ifthe state noise option is not needed, a significant amount of core can be saved.

The state noise option cannot be run as a separate job like the wind-tunnel input or

time history plotting, so removing this option constitutes a sacrifice of capability,

not just of convenience. The state noise option is removed by eliminating subroutines

FADJ, FLIMIT, KALMAN, and GRADK. The routines ADDPAR, GETPAR, GRADP,
LYAPCB, MOVE, MULTT, RICATC, SSIMEQ, and TRANSP are called only from the

four primary state noise routines (directly or indirectly) and can thus also be
eliminated. Common block GRDCOM and cards 71 to 82 should be removed from

subroutine GRAD. The routines EIGENG, BALANC, HQR, HQR2, ELMHES, ELTRAN,

and BALBAK can be eliminated ifthe state noise option is removed and the computation
of the determinant at cards RESIDS. 56 to 62 is eliminated. Several matrices used

only with state noise (F, FV, APRF, P, and KGAIN) could be eliminated along with

short sections of code in the rest of the program, but such savings are not large.

2.8.5 Miscellaneous Files

Several files used by the program can be eliminated to lower disk utilization.

Elimination of files UWT and UT2 is discussed in sections 2.8.2 and 2.8.3, respectively.
File UTHOUT is an easily sacrificed frill written by routine THOUT. The punch file
UPUNCH can also be dispensed with, in which case subroutine OUTPUN would be
eliminated.

25

2.8.6

The file UDATA, read by subroutine READTH, is not used if the time history
is read from cards. Alternately, the input time history file can be prepared before-
hand, with times selected out and data corrections made, and attached directly as
file UT1. In this case most of subroutine THDATA can be eliminated; only the
averaging and the call to user routine AVERAGneed remain. If absolutely no disk
or tape storage is available, the time histories can be stored in core, but this uses
a large amount of core even if one is very selective about the number of signals used.
If there is a capability for having only single file on disk or tape, that file should
be UT1.

2.8.6 HQRand HQR2

Subroutine HQRis the sameas HQR2without the eigenvector computation.
Therefore, HQRcan be eliminated by adding an argument to HQR2to control skip-
ping the eigenvector computations. The change is easy and saves a worthwhile
amount of core if segmentation is not used. The two routines are separated in MMLE3
because it was desirable to use the EISPACKroutines as published in reference 6,
and because there is no penalty for the code duplication if segmented loading is used.

If the state noise option is removed, the routines HQRand HQR2will normally
also be removed and this question will be moot.

2.8.7 Minimum Program

IfMMLE3 is to be run on a small minicomputer, itmay be necessary to make
further reductions than those described above. This section describes the reduction
of MMLE3 to about the minimum usable size.

The actual derivative estimation is performed by subroutine NEWTON and the

subroutines called by NEWTON. The rest of the program can therefore be dispensed
with, except for the minimum needed to define quantities used by NEWTON. In

particular, subroutines WTIN, TITLES, EDIT, MATSET, MTLOAD, THDATA, MATDEF,

COMPAT, ALLOW, SUMOUT, THPLOT, and subroutines called only through these

routines can be eliminated. Section 4 describes the general relationships of these
routines. Figure 1 can also be helpful in checking which routines and common blocks

can be eliminated in this process. Some type of minimal input routine will be needed
to define the common block parameters used by NEWTON. In addition to the basic

matrices and options, the data in common block DETERM must be defined. The

unmodified MMLE3 program reads the data in a more convenient format, and then

subroutine ALLOW creates the listsin block DETERM based on the input. This

makes the program easier to use, but uses significantly more memory than reading
the data directly in the format required by NEWTON.

A minimal size MMLE3 would also incorporate the previously discussed modi-
fication to eliminate the state noise option to reduce the size of the part of the

program under subroutine NEWTON. A few more words could also be saved by
eliminating the separate storage of the M suffix matrices in common block MATRAT.
The M suffix matrices could be equivalenced to the matrices in block DIMMAT
instead of stored separately.

26

3.0 MATRIX STORAGE

3.0

This section discusses the matrix storage conventions used by the MMLE3

program. Methods of changing maximum matrix dimensions are also shown.

3.1 Conventions

The MMLE3 program must be able to work with matrices of varying size without

recompilation. The FORTRAN language is not well equipped to handle variable size

matrices. A set of matrix storage conventions has been adopted to partially alleviate

this problem. Figure 2 illustrates the conventions discussed in this section.

Numberof physical columns

Numberof
physical rows

Matrix locations used
(logical size)

Unused

Flag Number of Number of Name Unused
rows coluruns

Figure 2. Matrix storage conventions.

27

3.1

The numbers in the FORTRAN dimension statement are referred to in this report

as the physical dimensions of a matrix. These values control the amount of space

allocated for the matrix by the FORTRAN compiler, and thus the largest usable di-

mensions of the matrix. Changes of the physical dimensions of a matrix require

recompilation and are discussed in section 3.2.

Although the physical dimensions of a matrix are fixed, the program can store

a matrix smaller than the physical dimensions as a partition of the physical matrix,

ignoring the remaining locations. The size of this partition in use, referred to as

the logical size of the matrix, may vary during program execution. No special

conventions have been adopted for vectors (unless they are stored as a matrix with

one logical column or row). The following conventions are used in MMLE3 to keep

track of the physical and logical dimensions of matrices.

The last physical row of each matrix is reserved for information about the

matrix; therefore, the physical number of rows of a matrix must always be at least

one more than the logical number of rows. The physical number of columns of

every matrix should be at least 4, because 4 locations in the last physical row
are used.

The first location in the last physical row is used as a flag to find the row.

The value used as a flag is defined in subroutine GETSET. Currently this value

is the real number equivalent to the characters "TEST" left-justified and blank-filled.

(On a CDC 60-bit computer, this value is approximately 3. 149 × 1092.) The flag

value should be one that will not occur in any of the matrices stored. Note that the

chances of any randomly picked value occurring in any given location are about 1

in 4 X 109 on a 32-bit computer and 1 in 1018 on a 60-bit computer. The odds in

practice are even more unlikely for very large values such as the one used here,

because the units used for most physical problems tend to keep values within a

couple of orders of magnitude of i. On a CDC computer, the value "negative indef-

inite" is a particularly good choice, because it can never be the result of an

arithmetic operation. (Subroutines GET and GETP would have to be slightly modified

if "negative indefinite" were used.)

The second and third locations in the last physical row are the number of logical

rows and columns, respectively. These values are stored as real numbers. The

fourth location in the last physical row contains the name of the matrix in Hollerith

format. This name is used when the matrix is printed or punched. The name DONT

is reserved for a special convention. The matrix print or punch routines (SPIT

and PLOP) will not output matrices with a name of DONT. This convention simplifies

control of which matrices will be output for a given case.

The functions of all the matrix manipulation routines are described in appendix A,

but a few of the most important will be briefly described here. GETSET is an initial-

ization routine that must be called before any of the other matrix routines. Routines

SET, SETI, and SET2 set elements in the last physical row of a matrix. GET and

GETP retrieve information about the physical and logical size of a matrix. UNSET de-

letes the flag from the first element of the last physical column of a matrix (this allows

the same space to be reused as if it were a matrix with different physical dimensions).

ABEND is an error routine; itintentionally causes an end-of-file error on the card

reader file in order to get an error traceback.

28

3.2

3.2 Changing Maximum Dimensions

The matrix storage conventions allow the logical dimensions of a matrix to be

changed within limits without recompilation. However, if a system to be analyzed

exceeds the physical dimensions of a matrix, the program must be recompiled with

larger dimensions. Conversely, if most of the analysis at an installation is done on

very small systems, it may be prudent to recompile the program with smaller dimen-

sions to avoid wasting core.

Changing the physical dimensions in a program as large as MMLE3 can be a

major task. The coding of the MMLE3 program was specifically designed to simplify

this task. Every card that must be changed in order to change the physical dimen-

sions is in a common deck (see sec. i). This convention minimizes the number of

places to check for changes.

In order to simplify the task further, program COMPUN was written to punch

out a complete set of the common decks with altered dimensions. The only input

to COMPUN is a NAMELIST defining the desired matrix sizes. A listing of this

program is shown in appendix C. The punched output from COMPUN can be used in

the COMSUB program (appendix B) to create the actual FORTRAN code. Alternately,

CDC UPDATE (ref. 2) can be used in place of COMSUB. Users of UPDATE will find

it convenient to change COMPUN so that it punches out a correction set. This is

done by changing each *COMDECK card in the data for COMPUN to an appropriate

delete card; an ident card will also be needed at the beginning, and resequence

cards may be desirable at the end (ref. 2).

4.0 PROGRAM STRUCTURE

This section gives a brief overview of the structure of the MMLE3 program.

Because of the large number of subroutines, it is difficult to understand the oper-

ation of MMLE3 by studying the individual subroutines. A guide to how the sub-

routines fit together as a coherent whole is needed. With this guide, the user should

be able to determine which subroutines are involved in any particular task; appendix A

and supplement 1 can then be consulted to find details of how the task is accomplished.

Figure 3 constitutes a structural diagram of the major routines of MMLE3.

Each box represents a task performed by one subroutine or a closely related group

of subroutines. The primary subroutine name is underlined at the top of the box,

and a brief description of the task follows. Important secondary subroutines called

in the performance of each task are listed at the bottom of the box. Minor subroutines

such as those for matrix manipulation are not included in the figure. The matrix

subroutines are called throughout the program.

29

4.0

WlIN

Initialize
program and

read predicted-
derivative

input

ONCE
VARDEF

I

TITLES

Read
titte card

HEAD

EDIT

Input options
and variables

USERIN

MATSET

Initialize
matrices

MTSET

MTLOAD

Read matrices

MATLD
CONIN

Y

Input data section

MMLE3

Main program

THDATA

Readtime
histories

READTH
AVERAG
THMOD

I

INIT

Set initial
conditions

UINIE
GRADIC

KALMAN

Compute
Kalman gain

matrix

RICATC

REAl

Compute
system matrices

DI M2
DIMI

CALLAM
MAKEM
MAKEL

MAKEVW J
r

OBSERV

3O

Figure 3. Structure of

4.0

MATDEE

Set matrix
defaults

WTDEF
SETCON
WTTRAN
LOADED

i

COMPAT

Test matrix

compatibility

ALLOW

Determine

parameters to
be esti mated

CONSTR
HARDC

VARY

I

NEWTON

Estimate

parameters

SUMOUT

Output
summary

information

CRAMER
ERRTHP
OUTPUN

THPLOT

Plot time
histories

AXES
AX90
LINES

SCALE2
TITPLT

SYMBL4

I

GIRL

Compute
time

histories
and

gradients

RESIDS

Analyze
residuals

FADJ

APRADD

Add in

"a priori"

I
BIAS

Modify
gradients

to compute
bias and
control

parameters
only

DFACT

Apply diagonal
convergence

factor

FLIMIT

Constrain

Kalman gains

I

UPDATE

Update
esti mates

GRADK

Compute
gradient of

Kalman gain
matrix

GRADP
LYAPCB

THOUT

Write output
time history

file

1
GRAD

Compute
gradients
of _ and

the MMLE3 program.

31

4.0

D_"yden Flight Research Center
National Aeronautics and Space Administration

Edwards, Calif., November 28, 1979

32

APPENDIXA

DESCRIPTIONS OF SUBROUTINES AND COMMON DECKS

CONTENTS

Page
A.1 Common Decks 37

A. 1.1 Basic Program 37
A. 1 1.1 HISTORY 37

A.1
A.1
A 1
A 1

A 1
A 1
A 1
A 1
A
A
A
A
A

A
A
A
A
A
A
A
A
A 1
A 1
A.1
A 1
A 1
A
A
A
A 1
A 1
A 1
A 1
A 1
A 1
A 1
A 1
A 1
A 1
A 1

1.2 AMCOM 38
1.3 AVGCOM 38

1.4 BIASES 38
1.5 BILIN 38
1.6 COM 39
1.7 CRMAT 39
1.8 DETERM 39
1.9 DIMMAT 39

1 1.10 DUMCOM 40
1 1 11 DUMVEC 40
1 1 12 ECOM 40
1 1 13 ERLIST 40
1 1 14 FCOM 40
1.1 15 FILES 40
1.1 16 GICOM 41
1.1 17 GRADS 41

1.1 18 GRADS 41
1.1 19 GRDCOM 41
1.1 20 GRSIZE 41
1 1 21 HEADNG 42
1 1 22 ICOND 42

1.23 INMAT 42
1.24 INOPT 42
1.25 INORD 42
1.26 INTEGR 43
1.27 KCOM 43

1 1.28 MAPCOM 43
1.1.29 MATIN 43
1 1.30 MATRAT 44

1.31 MATLAB 44
1.32 MATRIX 44
1.33 MAXCON 44
1.34 MAXIM 44
1.35 MAXIMS 44
1.36 MODCOM 45
1.37 OBSRV 45

451.38 OUTOPT
1.39 PBCOM 45
1.40 PHICOM 45
1.41 RECRD 46

33

Page
A 1.1 42 RICCOM............................ 46
A 1.1 43 SIZE 46
A 1.1 44 SOFCOM 46
A 1 1 45 SUMCOM 46
A 1 1 46 SUMSAV 47
A 1 1 47 TAPPOS............................ 47
A 1 1 48 THPLOT$ 47
A 1 1 49 TODATA 47
A 1 1.50 TOGIRL 48
A.1 1.51 TOGRAD 48
A.1 1.52 TOPLOT 48
A.1 1.53 VARDEF$ 49
A.1 1.54 XSUMS 49

A. 1.2 Standard Aircraft Routines 49
A 1.2.1 FLCOND 49
A 1.2.2 GFDEFS 49
A 1.2.3 GRAV 49
A 1.2.4 INERTS 50
A 1.2.5 INSTR 50
A 1.2.6 LONLAT 50
A 1.2.7 UVCOM 50

A.2 Subroutines 51
A.2.1 Basic Program 51

A.2.1.1 MMLE3 51
A.2.1.2 VARDEF 51
A. 2.1.3 TITLES 53

A.2.1.3.1 HEAD 53
A.2.1.4 EDIT (WTFILE) 53
A. 2.1.5 MATSET 53

A.2.1.5.1 MTSET (AN, AV, APRA, AM, IM, II, JJ) 53
A.2.1.6 MTLOAD (LAST) 53

A.2.1.6.1 CONIN (CON) 53
A.2.1.6.2 LOADED (AN) 55
A.2.1.6.3 MATNO (ALAB) 55

A.2.1.7 THDATA 55
A.2.1.8 COMPAT 55
A.2.1.9 ALLOW 57

A.2.1.9.1 CONSTR(CON) 57
A.2.1.9.2 GVALVE (IM, IR, IC) 57
A. 2.1.9.3 HARDC 57
A.2.1.9.4 LOCATE (IM, IR, IC) 58
A.2.1.9.5 SETCON(CON, AI, IR, IC, AJ, JR, JC, FACT, IFZERO) 58
A.2.1.9.6 VARY (AN, AV, APRA, AR) 58

A. 2.1.10 NEWTON 58
A.2.1.10 1 APRADD 60
A.2.1.10 2 BIAS 60
A.2.1.10 3 DFACT 60
A.2.1.10 4 PADJ (AVG) 60
A.2.1.10 5 FLIMIT 62
A.2.1.10 6 RESIDS (GIIT) 62

34

Page

A.2 1.10.7 SPITEM 62

A.2 1.10.8 UPDATE 62

A.2.1 1.11 GIRL CDOGRAD, LASTIT) 63

A.2 1.11.1 CALLAM 63

A.2 1.11.2 DIM1 63

A.2 1.11.3 DIM2 63

A.2 1.11.4 GRAD 65

A.2 1.11.5 GRADIC 65

A.2 1.11.6 GRADK 65

A.2 I.Ii 7 GRADP 65

A.2 1.11 8 INIT (IT, XTI, UI, Y, V, W) 66

A.2 1.11 9 KALMAN 66

A.2 1.11 10 OBSERV (X, U, ONES, V, W, Y) 66

A.2 1.11 11 REAT 67

A.2 1.11 12 SPIDIM 67

A.2.1 12 SUMOUT 67

A.2 1.12.1 CRAMER 67

A.2 1.12.2 CRSET (AC, AN, ALAB) 67

A.2 i. 12.3 ERRTHP 67

A.2.1 13 THPLOT CPLTOPN) 68

A. 2.2 Utility Subroutines 68

A.2.2. I ABEND 68

A.2.2.2 ADD CA, B, C) 68

A.2.2.3 ADDPAR (A, B, IB0, JB0) 70

A.2.2.4 AXES (XPAGE, YPAGE, AXANG, AXLEN, FIRSTV, SCALE,

ANNOT, HGT) 70

A 2.2.5 DIGIT (1) 70

A 2.2.6 DMULT CA, B, C) 70

A 2.2.7 EAT (A, TT, PHI, APHI, A2, A3, NEAT) 71

A 2.2.8 EIGENG (A, Z, WR, WI, FVl, VECTS) 71

A 2.2.9 GET CA, MAX, II, JJ) 71

A 2.2 i0 GETLAB (A) 72

A 2.2 11 GETP CA, MAX) 72

A 2.2 12 GETPAR (A, B, IA0, JA0, IIB, JJB) 72

A 2.2 13 GETSET (MAX) 72

A 2.2 14 IDENTI (A, MAX, If) 72

A 2.2 15 IDIGIT (A) 72

A 2.2 16 IHMSMS CITM, T) 72

A 2.2 17 INV CA) 72

A 2.2 18 LINES CX, Y, NPT, ISKIP, JSKIP, HGT, L) 73

A 2.2 19 LYAPCB CP, A, C) 73

A 2.2 20 MAKE (X, Y) 73

A 2.2.21 MATLD CA) 73

A 2.2.22 MIL CT) 73

A 2.2.23 MOVE CA, B) 73

A 2.2.24 MULT CA, B, C) 74

A 2.2.25 MULTT CA, B, C) 74

A.2.2.26 MVMULT CA, B, C) 74

A.2.2.27 PLOP (X) 74

A.2.2.28 PLTDAT CX, Y) 74

35

Page
A 2.2 29 REDUCE (A, MAX, N) 74
A 2.2 30 RICATC (P, A, B, C, DUM, H, E, WR, WI, FVI) 74
A 2.2 31 ROWCOL (IR, IC, STRING) 74
A 2.2 32 SCALE2 (XMIN, XMAX, S, AMIN, SCALE) 75
A 2.2 33 SET (A, II, JJ) 75

A 2.2 34 SET1 (A, MAX, II, JJ) 75
A 2.2 35 SET2 (A, MAX, II, JJ, ALAB) 75
A 2.2 36 SINV (A) 75
A 2.2 37 SMULT (G, A, B) 75
A 2.2 38 SPIT (A) 75

A 2.2 39 SSIMEQ (A, B, X) 76
A 2.2 40 SUB (A, B, C) 76

A 2.2 41 SUMULT (A, B, C) 76
A 2.2 42 SYM (A, PRNT) 76
A 2.2 43 SYMBL4 (X, Y, HGT, TITLE, ANGLE, NCHAR) 76
A 2.2 44 TRANSP (A, B) 76
A 2.2 45 UNSET (A) 76
A 2.2 46 VMADD (A, X, B, U, S, ONES, C, V, Y) 77
A 2.2 47 ZMULT (A, B, C) 77
A 2.2 48 ZOT (A) 77
A 2.2 49 ZOTl(A, MAX, If, JJ) 77

A 2.2 50 ZOT2 (A, MAX, II, JJ, ALAB) 77
A.2 3 Standard Aircraft Routines 77

A.2.3 1 AVERAG 77
A 2.3 2 INTERP (ALPHA, NABP, ABP, IA, JA, FIA, FJA) 78
A 2.3 3 MAKEL 78
A 2.3 4 MAKEM 79
A 2.3 5 MAKEVW (VB, WB, FIRST) 79

A 2.3 6 MATDEF (WTFILE) 79
A 2.3 7 ONCE 81
A 2.3 8 OUTPUN 81

A 2.3 9 READTH (INSTAT) 81
A 2.3 l0 THMOD (FIRST) 82
A 2.3 ii THOUT (FIRST, IT, X, Y) 82
A 2.3 12 TITPLT 83
A 2.3 13 UINIT (X, YBIAS, UMODEL) 83
A 2.3 14 USERIN (WTFILE) 83
A 2.3 15 WTDEF (MUSE) 84
A 2.3 16 WTIN 85
A 2.3 17 WTTRAN (AXIS, MUSE) 86

A.2.4 EISPACK Routines 87
INDEX OF COMMON DECKS AND SUBROUTINES 88

36

APPENDIX A

A

DESCRIPTIONS OF SUBROUTINES AND COMMON DECKS

This appendix contains descriptions of the function and operation of each of the

subroutines of the MMLE3 program. The variables in each of the common decks are

also described. The user routines described are the standard aircraft routines

(see ref. I, sec. 4).

Supplement 1 contains microfiche listings of the subroutines and common decks;

it should be consulted in conjunction with the descriptions in this appendix. The

common decks are listed first. Next, all of the *CALL cards are listed separately.

The separation of these cards from the FORTRAN listings is inconvenient, as cross-

checking between the list of the *CALL cards and the FORTRAN listing is sometimes

necessary, but a more convenient format of the listings is not easily obtained. The

following pages contain lists of the UPDATE correction idents and deck names, com-

pleting the listings produced by UPDATE. The largest portion of supplement 1

consists of the FORTRAN listings and reference maps. The EISPACK routines are

listed separately at the end of supplement i, preceded by an UPDATE deck list for
these routines.

A. i Common Decks

The common decks will be described in the order that they are shown on the

listing of supplement i. The common decks of the basic program are described

first, followed by those of the standard aircraft routines. Following each description

is a listing of the common deck.

A. i. 1 Basic Program

The first common deck of the basic program is common deck HISTORY; the

remaining common decks are in alphabetical order.

A.1.1.1 HISTORY. - Common deck HISTORY contains only comment cards. This

common deck is intended to give a history of program modifications. For each modi-

fication to the program, one card briefly identifying the modification should be added

to this common deck. Common deck HISTORY is called only from the main program.

*CnM_PCK HISTORY

C MODIFICAtIUN HISI]mYt

" END OF MnqT_ICATI]NS,

HISTORY 1

HISTOFY 2

_TSTO_Y 3

37

A.I.I.2

A.I.I.2 AMCOM. - Common deckAMCOM contains the vector BCONST. This

vector is defined by subroutine CALLAM; it contains the dimensionalization ratios

from the M suffix matrices. For dependent variables in hard constraints, the corre-

sponding element of BCONST is the constraint ratio times the dimensionalization

ratio from the M suffix matrix.

*C_MnECK AhCOM

CJM_UN IAMCqMI _r]N_T(50)
AHCOM 1
AMCOM 2

A o1.1.3 AVGCOM. - Common deck AVGCOM contains the average values of the

measured states (ZAVG), controls (UAVG), and extra signals (EXAVG). The

averages are computed for the entire, dimensioned lengths of these vectors, regard-

less of the vector size used in the system equations. The averages are taken over

all of the maneuvers if multiple maneuvers are used. Standard deviations, maxima,

and minima are also stored in AVGCOM. The relative position of the variables in this

common block should not be disturbed, since subroutines THDATA and DIM1 depend on

this order, treating ZAVG, UAVG, and EXAVG as a single, concatenated vector.

*_O_DECK AVGCOM

cn_ON /AVGCOMI ?&VGI OB),UAV_(O_},E_AVG{ ZOi,?SIG{ 08},

- USIG[04),FYaIG(20),ZMINM(OB),UMINM(O_),EX_INW(20),

- 7MAYM(08)pU_A_W{ u4)p_XM&XM(20)

AVGCOM I

AVGCnW

AVGCOM 3

AVGCDM 4

A. 1.1.4 BIASES. - Common deck BIASES contains the bias vector UOFF and YOFF

defined by subroutine INIT. The role of these biases is discussed in reference i,
section 3. I.

_eOMDFCK qI&aF$

CDMMDN /BIASES/ UOFF(v_)tYDFF(08)

RIASFS 1

BIASFS ?

A. I. 1.5 BILIN. - Common deck BILIN contains the measured time history data

for one time point. The observations (Z), controls (U), and extra signals (EXTRA)

are obtained from the time history data file. The bias vector (ONES) is computed

in subroutine GIRL (lines 61, 62, and 67) as described in reference i, section 3. I.

The logical variable TIMVAR is described in reference i, section 3.3.8(20). Average

values from common block AVGCOM are placed in Z, U, and EXTRA by subroutine

DIM1 when USEAVG is TRUE. Subroutine GIRL controls USEAVG. These average

values are used in the computation of the Kalman gain matrix and its gradients. The

relative position of Z, U, and EXTRA in the common block should not be disturbed,

or the average values will not be placed correctly.

*C_D_K BILIN

C_MMON IBILIN/ USEAVG_TIWVAR, Z(O_)_U(Ok)pEXTRA(ZO)_ONES(G4)

L3GICAL USF_V_,TIMVAq

@ILIN 1
BILIN 2

BILIN

38

A.I.1.6

A. 1.1.6 COM. - Common deck COM contains information about the time points
used for a case. NCASE is the number of maneuvers being analyzed (ref. 1,

sec. 3.3.8(1)). NPTS contains the number of time points in each maneuver, and

NPTT is the total number of time points for all of the maneuvers. ITMSTS contains

the total time in milliseconds of the first time point in each maneuver.

IC_MDECR CON

C_MMON ICON/ NCASE,NPTT, NPT$(I_|tITN_TS(IS)
CCM 1

CDM

A. 1.1.7 CRMAT. - Common deck CRMAT contains the Cram_r-Rao bounds for the
nondimensional matrices.

*CqMnFCK CQMAT

¢O_MON /CQ_AT/ AC(OBp 07}_@_(GgJ O()JSC(OBJ O_)sRC{ 08, 07|p

CC(05, 07),OC(Og, O_),_C(_gp O_|JEC(09, OT|,FC(Og_ 07)

CROAT 1
CPMJT ?

CR_T 3

A. 1.1.8 DETERM. - Common deck DETERM contains information describing the
unknowns to be determined. The first half of subroutine ALLOW defines the vari-

ables in this common deck. NVAR is the total number of unknown locations. It

equals the number of independent unknowns plus the number of constraints; thus,

some locations may be counted more than once if they are dependent variables in
more than one constraint. The remaining variables in the common block are vectors

of length NVAR. IMAT contains the matrix number. The matrices (ref. I,

sec. 3.3.11(1)) corresponding to the numbers in IMAT are 1 = AN, 2 = BN, 3 = SN,
4=RN, 5 =CN, 6=DN, 7 =HN, 8=EN, 9 =FN, and 10 = initial condition. IROW and

ICOL contain the row and column numbers, respectively (for unknown initial condi-

tions, the column number is ignored). ILOC gives the location of the associated

gradient variable, and ACONST is the constraint ratio. Each independent variable
will be associated with a unique gradient variable and the constraint ratio will be

defined as 1. Dependent variables in hard constraints will be associated with the

same gradient variable as the corresponding independent variable; the appropriate

constraint ratio will be used. The information in common block DETERM is printed
in the output under the heading "LOCATION INDICES ."

eC_nrCK OFTFRM

C3N_ON IDETER_I NVARgIM_T(_O)pI_OW(50}plCCL(50)pILOC(90),
- ACONST(50|

nETERM 1

DFTERV ?

DFT_RM 3

A. 1.1.9 DIMMAT. - Common deck DIMMAT contains the dimensional system
matrices. They are defined in subroutine DIM1.

*e_QUFCK DIMMAT

COMMON IDLMWATI A (OQp 07|pB { O_e Q4}tS | QBp 04IjR (089 07)P

C (Oqp 07left (oq_ O4)eH (Oqe 04|jE (Oge 07)

OIMM_T I

DIMMIT 2

DIMM_T

39

A.1.1.10

A. i. 1.10 DUMCOM. - Common deck DUMCOM contains three matrices used for

scratch storage in several subroutines.

*:_MnFCK _U_CC_

C_uN IOUMCU_/ OUMI C_, CIIpDUW2(0@, 07)pDUM3(O_j CTI

DUMCOM 1

DUMCOM 2

A.1.1.11 DUMVEC. - Common deck DUMVEC contains the vectors DUMX and

DUM2 used for scratch storage.

*_]MSECK OUMVEC

CJ_MUN IDUMVC_I DUMX(57)pDUWZX[07)

DL'WVEC 1

PUMVEC 2

A. 1.1.12 ECOM. - Common deck ECOM contains matrices of the state equation

multiplied through by R -I The specific variables are RI = R -1 RIA = R-1A

RIB = R-1B, and RIS = R-1S. These matrices are defined by subroutine DIM2.

*CTMDECK FCJM

COMM_H IECOMI RIA{ US, O?)_RIB(OP, O@),RIS(08, 04),_T(0_, C?I

EC_ 1

FCOM 2

A. 1.1.13 ERLIST. - Common deck ERLIST contains information on the convergence

of the cost functional. NITER is the current interation number, and ERRVEC is a

vector containing all of the previous values of the cost functional. The logical vari-

able BLOWUP is set if the error becomes unreasonably large, indicating probable

divergence. This causes iteration to stop prematurely. The dimension of ERRVEC

can be changed without affecting any other program dimensions; this dimension

limits the allowable number of iterations.

*_HDE_K _PLIST

_DMMON /ERLI_T/ BLOWUP,HITER,ERRVEC(50)

L3GICkL _LOwU _

EDLI$1 1

E_LIST 2

EPLIST

A. 1.1.14 FCOM. - Common deck FCOM contains the state noise power spectral
density matrix, F.

*_]_D¢CK _COM FCOP I

CnMMON IFCqw/ =(3B_ 071 FCOM 2

A. 1.1.15 FILES. - Common deck FILES contains the variables used for I/O unit

numbers. These variables are discussed in reference i, section 3.2. Their values

are defined by subroutine VARDEF. Ifthese values are changed, the program card

(cards MMLE3.2 to 6) must also be changed.

*_q_DE_K FILES

C_M_b_ IFLLESI UC_kD,UPUNCH,UPRINT,UDATA,UTI_UT2JUI_DUTPUWT_UPLqT

INTEGER UCARD_UDUNC_,UP_INT,UflATA,UT1,UT2,UTHOUT_UWT,UPLOT

FILES I

riLE5

$ILES

4O

A.1.1.16

A. 1.1.16 GICOM. - Common deck GICOM contains the GGI matrix and related
information. RSQ and FRSQ are the sample covariances of the raw and filtered
residuals (fit errors), respectively. WRSQ and WFRSQ are the diagonal weighted
fit errors. FREQCR, ITG, RLXG, and DIAGG are the input variables (ref. 1,
sec. 3.3.8(23) to (25)) that control the residual filter and the G determination. If
the residuals are not filtered (FREQCR equals 0), FRSQ will be the same as RSQ.
ERRFLT is the total filtered error sum, and SGNLS is the number of weighted sig-
nals. FC1 and FC2 are the constants computed to implement the residual filter.

e_MDFCK GICOM

C_MM_N IGICqMI ITG,DZAGG_FREOCRpRLXGtFCI_FC29ERRFLTtSGNLSP

- GGL{ 0qP O_)JR$_(_g_ O_)_FRSQ(Og, OB)_WPSQ(08)gW_RSO(OB)

LJGIC_L OIAGG

GXCCM 1

GICCM 2

GIC_M 3

GICOM 4

A.1.1.17 GRADS. - Common deck GRADS contains the gradients of the states

and observations. GRADX is the gradient of the state and GRADY is the gradient of
the observation. The residual is stored as an augmented column of GRADY. GRAD1

is a scratch matrix used in the computation of both gradients. The matrices are
also used for scratch storage in subroutine FLIMIT.

*COHD_C_ GRADS

C]MM_N /GR_DSI G_AD_{ OR, 35),GPADY(Oq, 35)JGRADI(Oq_ 35)

GWADS 1

GRAnS ?

A.1.1.18 GRADS. - Common deck GRADS contains vectors needed only in
subroutine GRAD. XT12 is the average of the state at the beginning and end of a

sample interval. XDT2 is the derivative of the state at the end of the interval;
XDT12 is the average of the state derivatives at the beginning and end of the sample
interval. The XDT's are computed ignoring state noise.

DImeNSION _OT2(07)pXDTI2(07)pXTL2(071

GRADS 1

GRADS ?

A. 1.1.19 GRDCOM. - Common deck GRDCOM contains the triply dimensioned

array DK. The third index of the array corresponds to the list of unknowns that
affect the K matrix. For each of these unknowns, DK(.,., i) contains the gradient

of K with respect to that unknown. DK is defined in subroutine GRADK.

*C(_¢_D E C K GkDCOM

CnMMON I_RQC_MI DK(OBt OPt 15l

GROCDM I

GRDCO_ 2

A. i. i.20 GRSIZE. - Common deck GRSIZE contains information about the size

of the gradient vectors. JKMM1 is the number of independent unknowns. NK is the

number of independent unknowns affecting the K matrix.

_CO_OECK GP_ITE

CJMMUN /_RSIZ_/ JKhV_I,NK

GRSIZE 1

GRSIZE 2

41

A.I.I.21

A. 1.1.21 HEADNG. - Common deck HEADNG contains labels and titles. SIGLAB,
XLAB, CONLAB, and EXLAB contain the labels for the observations, states, con-
trols, and extra signals, respectively. Two words are allowed for each label.
TITLE contains the title card for the case. ADATE and ATIME contain the date and

time if available to the program. The relative position of SIGLAB, XLAB, CONLAB,
and EXLAB should not be changed, as subroutine THPLOT depends on this relation-
ship (card THPLOT. 157).

*_J_uECK _EADNG

CUMM]_ INEADNGI TTTLE(?OI_AO&Tr,&TIME_

$_GLA_(?, Oe),XL_a{2, 07),CnNLAB(2, U_)_FXLA_(2, 20)

HEADNG 1

HEADN{ ?

HEADNG 3

A. i.1.22 ICOND. - Common deck ICOND contains information about the initial

conditions. USERIC and VARIC are input variables discussed in reference 1,
section 3.3.8(26) and (27). VARICS is the Boolean sum of the elements of VARIC.

DXIC is the initialcondition increment estimated when elements of VARIC are TRUE.

*_MD_CK ILJNn

C]_MON IICqNDI U_F_IC,VwRLLS_VARIL(Q?)*DXIC(07}

LUGLCAL U_ERIC_ VARI_, V_IC

ICJND 1

ICON_

ICOND 3

A. i.1.23 INMAT. - Common deck INMAT contains information from a matrix

header card during matrix input. ALAB is the matrix name, and IM is the corre-

sponding matrix number defined by function MATNO. IIand JJ are the numbers of
rows and columns, respectively.

*CnMDECK INMAT

bOMMON IINWAT/ ALAB,TI_JJ,TW

INM_T I

INMAT 2

A. 1.1.24 INOPT. - Common deck INOPT contains the logical variables CARD and
TAPE, described in reference 1, section 3.3.8(2).

*"INDECK INODT INOPT I

C3WNON ILN}PTI CARD,TAOF IN_PT 2

LD_ICAL CARD,TAPE INOPT)

A. 1.1.25 INORD. - Common deck INORD contains information about the order of
signals on the time history data file. All of the variables are described in reference 1,
section 3.3.8(6) and (7). The relative position of ZCHAN, UCHAN, and EXCHAN

should not be changed, since subroutine THDATA depends on this relationship.

=C_MUEC_ I_ORU

COMMON II_JRDI _wEC,ZCHAN(O_)_LtCHA_(04]pEXCHAN(20)

tITEGEQ ZC_N_UCHAN_CXCHA_

IN_RD I

INORD ?

IkqRD 3

42

A.1.1.26

A. 1.1.26 INTEGR. - Common deck INTEGR contains data required for the integra-
tion routine EAT. DT is the sample interval of the data (after any thinning). NEAT

is an input variable described in reference i, section 3.3.8(15).

• r_MDECK _NT_GR

COWHON IINTEGRI DT,NEAT

INT_GP l

INTEGR ?

A. 1.1.27 KCOM. - Common deck KCOM contains the Kalman gain matrix, KGAIN,
and the Riccati covariance matrix, P.

*_I_O_CK KCOM

C,JM_EN IK_JMI _(3@, CT),_GAL_(06, OB)

RFAL KGA_N

KCC]I, l

KCqP ?
Kcr)M

A. i. i. 28 MAPCOM. - Common deck MAPCOM contains internal location maps.

These maps are created by the second half of subroutine ALLOW and are used only
in the state noise algorithm. Each vector in MAPCOM maps from a source list to a
destination list. Each map vector in MAPCOM is the same length as the source list;
each element in the map corresponds to an element in the source list. The value of
each map element indicates the position in the destination list with which the cor-

responding source element is associated. A value of 0 for any map element indicates
that the corresponding source element is not associated with any element of the
destination list.

The variable names of the maps are all five characters, the first three of which
are "MAP." The fourth and fifth characters indicate the source and destination

lists, respectively. The letters used for the fourth and fifth characters are U, G,
and K. U represents the complete list of unknowns, including independent unknowns
plus constraints; the length of this list is NVAR (common block DETERM). G
represents the complete list of gradient elements; the length of this list is JKMMI
(common block GRSIZE). Each independent unknown will correspond to one gra-
dient element. K represents the list of gradient elements which affect the K matrix;
the length of this list is NK (common block GRSIZE).

eCqMDECK M_PCuM

CdM_DN IM_PCflMI M&PUK(50)tMAPKG(15)

NAPCO_ l

MAPC_M

A.l.l.29 MATIN. - Common deck MATIN contains matrices that are only used in

the input section of the program. The information from these matrices is put into
other forms for use later in the program. The matrices in this common block are

the V suffix, APR prefix, and hard constraint (HARD) matrices. All of these matrices
are described in reference i, section 3.3.11(3), (4), and (6), respectively.

*e_MLECK _ATIN

COMM_ /MATIN/ AV(OPJ 07),BV(08, 04),SV(08, 04),RV(OBe 07),

- CV(09p 37),0V(Oq, v4)pHV(uOp O_),EV(Og, OT},FV(U8, C?|,

APR&(0_ 07|,APWB(08_ O_)pAPR_(aBj 04),APRP(OB, 07),

_PRC(09p 07)eAPRD(Oqp O;)tAPWH(oqp 04|pAPRE(Oq, 07)P

APRF(OFt 07)_H&RD(36,7|

MATIN 1

MATIN

MATIN 3

MATIN

MATIN

MATIN 6

43

A.1.1.30

A. 1.i.30 MATRAT. - Common deck MATRAT contains the M suffix matrices.

tC_[,FCK w&TD&T

CUMMON /MA[RAT/ AM(O_, 07),qM(OBt O_),SM(08, 0_),_M(08, _7)_

- CM(39_ 07)_W(Oq, C_|_HM{ Oqp O_),_M(Oq_ 07)

MATRAT 1
MATRAT 2

MATRAT 3

A. 1.1.31 MATLAB. - Common deck MATLAB contains the list of matrix labels

and read flags. NMATS is the length of these lists (currently 31). LAB is the list

of matrix labels. INFLAG is the list of read flags. Each element of INFLAG is I if

the corresponding matrix has been read from cards; the element is 0 if the matrix

has not been read. INFLAG is initialized to 0, and NMATS and LAB are defined in

subroutine MATSET. INFLAG is then altered by cards MTLOAD.25 and CONIN.28.

_CT_DEC_ M_TLA_

RE_L LAP

ATLA 1
MATLAB)

MATLk_ 3

A. 1.1.32 MATRIX. - Common deck MATRIX contains the N suffix matrices,
described in reference 1, section 3.3.11(i).

MJTRIX I

PATRIX ?

PATalW

A. 1.1.33 MAXCON. - Common deck MAXCON contains the maximum dimensions

MAXHRD and MAXSFT for the constraint matrices, HARD and SOFT (ref. i,

sec. 3.3.11(6) and (7), respectively). The variables MAXHRD andMAXSFT are

defined by common deck VARDEF$. Maximum matrix dimensions are discussed in

section 3 and in reference 1, section 2.

_'_4u:CK MAXCON

CJ,_MON IMAXCON/ "AXqRO,MAX_PT
M_CCN i

A. 1.1.34 MAXIM. - Common deck MAXIM contains some maximum matrix dimen-

sions. NI, MAXTV, and MAXKV are defined by common deck VARDEF$. MAXXI and

MAXZI are defined as MAXX + 1 and MAXZ + 1 in subroutine VARDEF. Maximum

matrix dimensions are discussed in section 3 and in reference i, section 2.

*CI_=CK MA_IM

CO_MD_ I_XIM/ _AXXI,"AXII,NI,"AX]V,WAX_V
M_XI W 1

MAYI M 2

A. 1.1.35 MAXIMS. - Common deck MAXIMS contains some maximum matrix

dimensions. MAXX, MAXZ, MAXU, MAXB, and LEX are defined by common deck

VARDEF$. LORD is defined as MAXZ + MAXU + LEX in subroutine VARDEF. Maximum

matrix dimensions are discussed in section 3 and in reference 1, section 2.

44

CIMMnN /MAWIMOI 'w_X!(phAXZ,MAX(_.wAXB_LEX_LORD
MAXIMS 1

MAXI"S ?

A.1.1.36

A. i. 1.36 MODCOM. - Common deck MODCOM contains the logical variable UMOD.

UMOD is TRUE ifuser routines are used; otherwise, it is FALSE. UMOD is defined

by the main program; the input to control this is described in reference i, sec-
tion 3.3.2.

*'I_D_CK 4ODCOM MCDC_Y 1

CI4MON IwOOCOM/ UM[_ NODCC_ 2

L,3SAC_L UMIO M_DCDP 3

A. 1.1.37 OBSRV. - Common deck OBSRV contains matrices used for the computed

observations and their gradients: ERIAC = ER-1A + C, ERIBD = ER-1B + D,

ERISH = ER-1S + H, ERI = ER -1 These matrices are defined by subroutine DIM2.

_J_M_'i IO@_R_I LQI$_(V_, 07),E&IBD(Og, Q4IpEPISH(Jq, O_)p

- =_I(OgJ 07)

CBSRV l

OPSRV ?

CP_RV 3

A. 1.1.38 OUTOPT. - Common deck OUTOPT contains variables controlling out-

put options. All of these variables are described in reference i, section 3.3.8.

*CIMnECK _UTuPT

Cu_Mu_ Id_t_lkTt PEi!_T_J_RIi_TY_}_INT3,PLJTEM,PUNC"pT_T,PLTMA_p

CR_TH

LJGICAL PRINIXJP°!NTY_R_I_IO_PLCItYtPUNCW_TESTpFR_TN

OUTCPT 1

OUTC°T ?

5UTCPT 3

CUTCPT 4

A. 1.1.39 PBCOM. - Common deck PBCOM contains PB, the vector of changes in
the coefficient estimates. The call to MVMULT at card NEWTON. 66 defines PB.

It may be modified by subroutine FLIMIT.

• _n½DECK _BCOr PBC_M l

C_MM_N /PBCDW/ PR(3_) PBC_M ?

A.1.1.40 PHICOM. - Common deck PHICOM contains the transition matrix and

several products involving its integral. The transition matrix, PHI, is the expo-

nential of R-IAAt. Call the integral of the transition matrix, _. Then,

PSIB = _/R-IB, PSIS = _/R-1S, and PSI = _/R-1 All of these matrices are defined by

subroutine REAT.

'?q_uECK _Icr_

_]_wON /oHLCEMI _HL(08, _7),P$*(OB_, O?)_PSIB(Oe, u41*

PSIS(OB_ (_4)

ICO I

PHICUM 2

PNICD_ 3

45

A.1.1.41

A. 1.1.41 RECRD. - Common deck RECRD contains one record from the time

history data file. EOFTH can be set to TRUE by user routine READTH to indicate

an end-of-file. T is the time in integer hours, minutes, seconds, and milliseconds.

RECORD is the data for that time. The dimension of RECORD can be changed without

affecting any other program dimensions.

*_MDECK RECRD RECRD l

CJ_MGN IRECRDI EnCT_,T(4),REC_P(IO0) RFCRD 2

LOGICAL _UrTH RFCRO 3

IqTEGEQ T @_C_C 4

A. 1.1.42 RICCOM. - Common deck RICCOM contains matrices used to compute the

Kalman gain matrix and its derivatives. RIF = R-1F, RIFRIF = R-IF(R-IF) *,

CTG = C*(GG*) -I and RIAP = R-lAp DUMXZ and DUMZX are scratch storage

te1_OECK RICCOM

CJMMJN I_ICCOMI DUUXI(O _ , n_)tDUMZ_(Oq, 37)_

- RIAo(OBp 071,CTG(u_:, OP),_IF(_ O?)_Rlg_lg(3Q_ 07)

QICCrM 1

RICC_ ?

RICCOV 3

A.1.1.43 SIZE. - Common deck SIZE contains the system vector sizes. MX is the

length of the state vector, MZ the observation vector, MU the control vector, and

MB the bias vector. These lengths are defined by subroutine COMPAT. They are

discussed in reference 1, section 3.3.8(11) to (14).

*C74DECK _TZE

Cq_MDN ISIZF/ MX_Zp4L'jM_

SITE 1

SITE 2

A.1.1.44 SOFCOMo- Common deck SOFCOM containsthe matrix ofsoftconstraints,

SOFT.

*_I4DCCK ¢qcC5_

COMMqN I_zC'JMI 51FT(L£pT)

Sc;crM 1

SO_C_M 2

A o1.1.45 SUMCOM. - Common deck SUMCOM contains the SUM matrix, the second

gradient of the cost functional. Only the lower triangular and diagonal parts of this

symmetric matrix are stored. The first gradient is augmented as a last row or

column. JKM is the logical dimension of the SUM matrix, i.e., the length of the

gradient vector JKMMI (common block GRSIZE) plus i. In subroutine APRADD,

the upper triangle of the matrix is used to form the a priori terms. In subroutine

KALMAN, the SUM matrix is used for scratch storage. After the last iteration, the

Cram6r-Rao bounds and correlations are computed in the SUM matrix.

46

A.1.1.46

A. 1.1.46 SUMSAV. - Common deck SUMSAV contains information about the

a priori penalty function. WAPR and ITAPR are described in reference 1, sec-
tion 3.3.8(22). DIAGON is the weighting vector of squared elements selected from
the APR prefix matrices (ref. 1, sec. 3.3.11(4)). APRDIF is the vector of differences
between the estimates and the a priori values. DIAGON is defined and APRDIF is
initialized by subroutines ALLOW and VARY.

CU_U_ I_UH_AVI uIAGJN[_)paP_OIF(_5}tW_Pk_ITAP_
SUMSJV 1

_UMShV 2

A. 1.1.47 TAPPOS. - Common deck TAPPOS contains information about the

position of the time history data file. ITM is the last time read in total milliseconds;
it is initialized to 0 in the main program. REW is used to request that subroutine

READTH rewind the time history data file. REW is set to TRUE on the first point of
a maneuver if the maneuver start time is less than or equal to the last time read. At

all other times, REW will be FALSE. User subroutine READTH is responsible for
checking REW and manipulating the data file as desired.

*_qNDEKK TAp_O$ TAPPO$ t

COMMON /TAPPOS/ ITM,RFW TAPPO$ 2

LqGICAL QcW TAPPO_ 3

A. 1.1.48 THPLOT$. - Common deck THPLOT$ contains variables used only in
subroutine THPLOT. If the program is run without segmentation or overlay, it
may be desirable to shorten these vectors and store them in common blocks not used

during the plotting (SUMCOM is the largest such block). Time from the maneuver
start is stored in the vector TIME. Measured and computed observations are stored
in X and XX, respectively. NCH is the number of observation time histories stored

simultaneously, and NTPLT is 2 plus the maximum number of time points plotted
(see sec. 3.2). XXX is equivalenced to X and XX; it is used to store up to 2 X NCH
state, control, or extra signal time histories. Z, ZZ, and DC are used to read in
each point of the time histories. VMINS and VMAXS contain the minimum and maxi-
mum values of the signals plotted. IPLT is a vector used to indicate which of the

states, controls, and extra signals are to be plotted.

tKIMDECR THPLPT$

OIMENSIZN Z{ OB},ZZ{ OBIpDC(31]_IPLT(31)pVMIN_(Obt,VMAX$(06),

- TIME(120?),X_X(IZ02, 06),X(1202, 03)pXX(1202_ 03}
EQUIVALENCE (X(1,1),X_XiZpl))_(XX(I_I)tXXX(lj 04))

C

_IPLT-1ZOZ
NCH- 03

THBIOT$ 1

THPLOT$ 2

THPL_T$ 3

THPLOT$ 4
THPLDT$ 5

THPLOT$ 6

THPLOT$ 7

A. 1.1.49 TODATA. - Common deck TODATA contains information needed to

read the time history data file (channel numbers are in block INORD). STC and ETC
are the requested maneuver start and end times in total milliseconds. All of the other

variables are input variables described in reference 1, section 3.3.8(3), (8), (9),
(29), and (32). The relative positions of ZBIAS, UBIAS, and EXBIAS in the common

47

A.1.1.50

block should not be changed, since subroutine THDATA depends on this relationship.

The same applies to ZSCALE, USCALE, and EXSCAL.

*CO,DECK TODATA

COMMON /TJOAIA/ STC(IS),ETC(lS),THIN, PRINTI,MAXRPCj

- ZBIAS(OB),UBIAS(Q_)tEX_IJS{ ZO),ZSCALE(O8)pUSCALF(04),

- _XSCAL(20)

INTEGER THI_$TCJETC

LOSICA[P_I_IT

TOOATA 1

TCDATA

TODATA 3

TDDATA 4
TODJTA

TDDATA 6

A.i.i.50 TOGIRL. - Common deck TOGIRL contains input variables used to con-

trol convergence. SNOISE is TRUE if the state noise algorithm is used; it is defined

by subroutine ALLOW. The remaining variables are described in reference 1,

section 3.3.8(16)to (19), and (21). Variables that control G determination and

a priori are in common blocks GICOM and SUMSAV, respectively.

• r]MDECK TOnTRL

COMMON IIO_TRLI BULJNDjER_MAXpFULLIjNOITFReDFAC,ITCFAC_SNOISE

L_IC_L FL!LLIPSN_TS_

TOGIRL 1

TOGIRL Z

TOGIRL 3

A. 1.1.51 TOGRAD. - Common deck TOGRAD contains system vectors used in

computing the time histories and gradients. The suffix 1 indicates a value at the

beginning of the sample interval; the suffix 2 indicates a value at the end of the

sample interval; the suffix 12 indicates the average of the values at the beginning

and end of the sample interval. Names without suffixes indicate the end of the

sample interval. XT is the predicted state, XH the corrected state, U the control, V

and W the known forcing functions in the state and observation equations, Y the

predicted observation, Z the measured observation, ZMY the residual, and ZMYFLT
the filtered residual.

*c_MnECK TOGRAD

COMMON IT_GRADI YTI(07|pXTZ(07)_XHZ(07),

Vl(O?},V2(07),VIZ(07),UI[04},UZ(O_),UI2(O_)J

Y(O8|,ZWY2[O@)_ZWYFLT(O8)_W(08)

TOGRAD 1

TOGRAD 2

TOGRAD

TOGRAD 6

A.1.1.52 TOPLOT. - Common deck TOPLOT contains input variables used to

control plot scales and signals plotted. All of the variables except for RATIO are

described in reference I, section 3.3.8(35), (36), (37), and (39) to (44). RATIO is

PLTFAC/2 if INCH (ref. 1, sec. 3.3.8(38)) is TRUE and PLTFAC/2.54 ifINCH is

FALSE. The relative positions of XMAX, UMAX, and EXMAX should not be changed,

since subroutine THPLOT depends on this relationship. The same is true for XMIN,

UMIN, and EXMIN0

t_IMDFCK TQPLOT

CJMMuN IrDPLDTIZMAW(081,ZMIN(O8),XMAX(07),UHAW(O_),EXMAX(ZO},

- _MIN(07)pUMIN(04),EXMTN(ZO)jXPL]T[O7)JNUPLT,NEXPLT,

- TIMES_,RATI_,PAaER

LOGICAL XPLOT

TOPLOT 1
TCPLOT Z

TDPLOT 3

TOPLOT

TOPLOT 5

48

A.1.1.53

A.1.1.53 VARDEF$. - Common deck VARDEF$ defines the values of the physical
matrix dimensions. This common deck is called only in subroutine VARDEF. Matrix

physical dimensions are discussed in section 3 and in reference 1, section 2.

*e_MDECK VARDEF% VAROFF$ I

M&X_ - 07 VARDEF$?

MAXZ • 08 VARO_F$ 3

XU - 04 VAgD$ 4

M_q - 04 VAR_EF$ 5

LEX • ZO VARDFF$ 6

NT -)_ V3R_EF$ 7

MAXTV • 53 VARDEr$ B

MkXKV - 15 VARDEF$ q
MAXHRO - 36 VAROF¢$ 10

M_XS_T • Ii VARDFF$ II

A. 1.1.54 XSUMS. - Common deck XSUMS contains the averages and standard
deviations of the corrected states for the last iteration. Cards 37 to 39 and 116
to 118 of subroutine GIRL accumulate the sums in XSUM and the sums of the squares
in X2SUM. Then cards 36 to 42 of SUMOUT compute and print the averages in XSUM
and standard deviations in X2SUM.

o'_DECK XSUMS

CJMMUN IXSUM_I X_Uw(07),X2StJM(07)

XSU_S 1

X_U_S 2

A. 1.2 Standard Aircraft Routines

The common decks of the standard aircraft routines are described below in

alphabetical order.

A. 1.2.1 FLCOND. - Common deck FLCOND contains variables describing the
flight condition. All of the variables except G are input variables described in
reference 1, section 4.3.3(10) and (15) to (21). G is the acceleration of gravity,

32.172 feet/second 2or 9.80665 meters/second 2 depending on METRIC (ref. 1

sec. 4.3.3(3)).

*CqMDECK FLCOND

C_MMON I_LC_NDI QBARpV_THFTApPHI_ALPHA_MA_HpPARAM.CG,G
REAL _ACH

FLC_ND 1

FLCQNO 2

FLCOND 3

A. 1.2.2 GFDEFS. - Common deck GFDEFS contains the default values for F and

GGI defined by subroutine ONCE. FLON and FLAT are the longitudinal and lateral-

directional defaults for F. GGILON and GGILAT are the corresponding defaults
for GGI.

*C,I_DECK GFDEFS

CqMMDN IGFOE$SI nGILIT(Oq_ OBItGGILON{ Oqp 081,FLAT(08_ OT)e

FLON(OBP 07)

GFDFrS 1

GFOEFS 2

GFnEFS

A. 1.2.3 GRAV. - Common deck GRAV contains the derivatives of the gravity

terms in the _ and _ equations. DGDT is the derivative of the gravity term in _ with

49

A.I.2.4

respect to e. DGDP is the derivative of the gravity term in _ with respect to ¢p.

These quantities are defined by subroutine MAKEL and subsequently used in both

MAKEL and MAKEVW for the linearization of the gravity terms.

e_3MD_CK GR&V GRAV 1

2M(q IGRAVI DGuT_D_DP GRAV ?

A. 1.2.4 INERTS. - Common deck INERTS contains aircraft mass and geometry

data. All of the variables except MASS and WTCG are input variables described in

reference i, section 4.3.3(2), (4), (5), (6), (8), and (9). MASS is the weight

(ref. 1, sec. 4.3.3(7)) divided by the acceleration of gravity. WTCGis the reference

center of gravity of the predicted derivatives. If a predicted-derivative file is

not used (ref. i, sec. 3.3.4), WTCG is undefined.

eC3MDFCK INFRTS

COMM04 IINERTS/ [XglY,IZJIXZ.IXE,MASS_ARrA.CHORDpSPAN_WTCG,SHIFT

REIL IX,IY,IZ, IXZ, I_E,MISS

LOGICAL SHIFT

iNFRTS 1

INEPTS ?
INERTS 3

INE_TS 4

A. 1.2.5 INSTR. - Common deck INSTR contains instrument positions and cor-

rections. All of the variables except DCGFT are input variables described in

reference I, section 4.3.3(11) to (14). If SHIFT is TRUE, DCGFT is the distance of

the flight center of gravity forward of the reference center of gravity in feet or meters.

If SHIFT is FALSE or if there are no predicted data, DCGFT is 0.

eeqMDECK INSTP

C3MMON IIN}T_/ KALF,KB,XAL_,XB,WANpXAXeXAY,YALF,YB, YANJYAXtYAYp

- ZALF,Z_,ZAN,ZAX,ZAY, DCGFT
REAL KALFpKB

INSTR 1

INSTR 2

INSTP 3

TMSTg 6

A. 1.2.6 LONLAT. - Common deck LONLAT contains the logical variables LONG

and LATR, described in reference i, section 4.3.3(I). The program forces LATR to
be .NOT.LONG.

e_gMDrCK L_4LAT

COMMON ILnNLATI LON¢,LATQ

LOGICAL LONG,LATR

LONLAT 1

LONLAT ?

LONLAT 3

A. 1.2.7 UVCOM. - Common deck UVCOM contains the vector UVAR described

in reference I, section 4.3.3(22).

*_MDPC_ UVCOM UVCZM 1

COMMON /UVCnNI UVAR(06) UVCDW ?

i4TEGER UVAR UVCOM 3

5O

A.2

A. 2 Subroutines

The subroutines will be described in the order that they appear on the listing

of supplement 1. The main program and the subroutines of the basic program are
described first. Then follow the general utility routines for matrix manipulation,
plotting, and time conversion. The standard aircraft user routines are described
next, followed by the EISPACK routines. The flow of most of the routines is so
simple that flow charts would be superfluous. Flow charts are given for those few
subroutines for which they are useful. Refer to section A. 1 for descriptions of the
variables in common blocks.

A.2.1 Basic Program

The major routines of the basic program are listed in the order of their use.
Major routines are defined as the main program, including all subroutines called
directly from the main program. Subroutine GIRL is so important that it is con-
sidered to be a major routine even though it is called from subroutine NEWTON,
instead of from the main program. Each major routine is followed by the associated
minor routines, listed in alphabetical order. The subroutine descriptions all refer
to the cards at which the subroutines are called.

A.2.1.1 MMLE3. - MMLE3 is the main program. It contains the only call to
common deck HISTORY, which describes the modification history of the program.

The program card defines the files and buffer sizes. The program card and the

variable definitions in common deck VARDEF$ must be changed in order to change

filenumbers. Some systems may not allow a program card, in which case it
should be deleted.

The program firstcalls VARDEF to initializefilenumbers and matrix physical

dimensions. The variable ITM (lasttime read on the input time history file)is then

initializedto 0. The variable PLTOPN indicates whether the plot filehas been
opened; itis initializedto FALSE.

Cards 37 to 43 read the syntax check card (ref. 1, sec. 3.3.1) and the user
routines control card (ref. 1, sec. 3.3.2) and define the variable UMOD. The

rest of the section is skipped if UMOD is FALSE. If UMOD is TRUE, subroutine ONCE
is called for any user initialization, and the predicted-derivative control card
(ref. 1, sec. 3.3.4) is read to define WTFILE. Depending on the predicted-derivative
control card, user routine WTIN is then called to read predicted-derivative data.

Cards 56 to 70 loop until all cases have been analyzed (indicated by the variable
LAST returned from subroutine MTLOAD). If the plot file was opened, subroutine
PLOT is called after termination of the loop in order to close it.

A .2.1.2 VARDEF. - Subroutine VARDEF defines the variables describing the I/O
filenumbers and the matrix physical dimensions. Common deck VARDEF$ is included

to define the basic matrix physical dimensions. Other dimensions are then computed
from the basic ones. VARDEF calls subroutine GETSET to initializethe matrix

routines and define the maximum physical dimension allowed. VARDEF is called
at card MMLE3.31.

51

A.2.1.2

MMLE3)

T

Initialize. I

Define dimensions

and file numbers

m

Read syntax check card I

and user routines control card i

[Do user initialization]

Read predicted-derivative]control card

,wmd tunnelj-_ wind-tunnel I

"<X> / I dat_lI

No Yes

I Read input for ease I

Yes +

I ead time history

T
Estimate parameters

N o

Yes

Plot time histories]

52

A.2.1.3

A.2.1.3 TITLES. - Subroutine TITLES reads the title card for a case (ref. 1,

sec. 3.3.6). It also calls the DATE and TIME routines (sec. 2.6) to find the date

and time of the run for identifying the printout. Subroutine HEAD is then called to

print the page heading. TITLES is called at card MMLE3.56.

A. 2.1.3.1 HEAD. - Subroutine HEAD prints a page heading, consisting of the

title, date, and time. HEAD is called from several different routines.

A.2.1.4 EDIT (WTFILE). - Subroutine EDIT reads the NAMELIST INPUT, the

signal labels, and the time cards (ref. 1, secs. 3.3.8 to 3.3.10). The first section

of code defines basic program default values. The user routine USERIN is called at

card 117 to read any input for the user routines (ref. 1, sec. 3.3.7). The argument,

WTFILE, is passed to subroutine USERIN to inform USERIN whether predicted-

derivative data are available. USERIN may modify the basic program defaults. The

next section of code reads the NAMELIST INPUT and makes some consistency checks

between the options. The next sections print out scalar variables and options, read

signal labels, and print vector variables and options. The last section of code reads

and prints the requested maneuver times. EDIT is called at card MMLE3.57.

A. 2.1.5 MATSET. - Subroutine MATSET initializes the input matrices as re-

quired by the standard matrix routines and defines their defaults. The N and V

suffix and APR prefix matrices are initialized to 0 (except for RN, which is initialized

to identity). Each element of the M suffix matrices is initialized to i. The GGI

matrix is initialized to 0, and the hard constraint (HARD) and soft constraint (SOFT)

matrices are initialized to indicate no constraints. The matrix labels and input

flags in common block MATLAB are also defined by MATSET. MATSET is called

at card MMLE3.58.

A.2.1.5.1 MTSET (AN, AV, APRA, AM, IM, II, JJ). - Subroutine MTSET is

used by MATSET to initialize a group of related matrices. IM is a code indicating

which group of matrices is being initialized. II and JJ are the logical matrix dimen-

sions to be used. For the matrices related to F (IM equals 9), an FM matrix is not

defined, so the code initializing the M suffix matrices is skipped.

A.2.1.6 MTLOAD (LAST). - Subroutine MTLOAD controls the matrix input for

each case. It reads the matrix header cards and determines which matrix is being

read. It then sets the input flag (INFLAG) for that matrix and calls MATLD or

CONIN to read the matrix body into the appropriate locations. Common block INMAT

is used to pass information from the header card to MATLD and CONIN. Subroutine

MTLOAD also detects the endcase card (ref. 1, sec. 3.3.12), which signals the

end of the matrix input. The variable LAST is defined based on the endcase card

and passed back to the main program as an argument. This variable flags the last
case of a run. MTLOAD is called at card MMLE3.59.

A.2.1.6.1 CONIN (CON). - Subroutine CONIN reads the body of a constraint

matrix input into the argument, CON, and prints out the matrix. Depending on the

matrix header card, the matrix input flag (INFLAG) is reset to 0, allowing the

constraints read in to supplement rather than replace any default constraints. This

is discussed in sectionA.2.3.6 and in reference 1, section 3.3.11. CONIN is

called at cards MTLOAD.85 and 87.

53

A.2.1.6.1

MTLOAD

I Write page heading

Read matrix
header card

Yes
Return

No

Identify matrix from
name on header card

Set flag to indicate
this matrix was read

Call MATLD or CONIN

to read matrix body

54

A.2.1.6.2

A.2.1.6.2 LOADED(AN). - Logical function LOADEDdetermines whether a
given matrix has been read in from cards. The function LOADEDis intended for
use by user routine MATDEF to determine whether the matrix defaults are used. The
matrix itself is used as an argument, and TRUE is returned if the matrix was read
from cards. LOADEDfirst calls GETLAB to extract the matrix name from the matrix,
and calls MATNOto find the corresponding matrix number. The vector of input flags
(INFLAG) is then checked to see if that matrix was read. LOADEDwill return the
value FALSE for constraint matrices that should supplement any default constraints
rather than replace them. This is because subroutine CONINhas reset the corre-
sponding input flag to 0. LOADEDis called many times in the standard aircraft
routines MATDEF and WTDEF.

A.2.1.6.3 MATNO (ALAB). - Function MATNOreturns a matrix number, given
its name as an argument. MATNO searches the list of names in commonblock
MATLAB to find a matching name. The value returned is the index of the matching
name. An error messageis printed if the name is not found in the list. MATNOis
called from several different routines.

A. 2. i. 7 THDATA. - Subroutine THDATA controls reading and processing of

the input time history file UDATA. Subroutine READTH is called to do the actual
manipulation of the data file so that the input format can be easily changed. THDATA

handles the time searching, data scaling, printing, averaging, and associated tasks.
For each maneuver (ref. l, sec. 3.3.8(1)), THDATA defines the variable REW based

on the last time point read and the requested start time. It then enters a search
loop from cards 48 to 55 for the start time. The actual start time used for each
maneuver is printed and stored for use by subroutine THPLOT.

Cards 58 to 91 then process data until the maneuver stop time is found. The
data are thinned if desired. At each time point, the requested data channels are
extracted from the input record, and scale factors and biases are applied. Subrou-
tine THMOD is called to modify or correct the data as desired. The data are then
written to the scratch file UT1 and printed if desired. Based on the first and
second thinned time points of the first maneuver, THDATA computes and prints the
sampling rate of the data as described in reference 1, section 3.3.8(4).

After all of the maneuvers have been read, THDATA computes and prints the

averages over the entire case of the observations, controls, and extra signals.

Standard deviations, minima, and maxima are also computed, but not printed. User

routine AVERAG is then called to allow the user access to these averages.

Subroutine THDATA stops with an error message if no time points are found in
a requested interval. Another error check limits the number of calls to user routine
READTH for each case; this is to guard against possible infinite loops caused by
logic errors or omissions in READTH. End-of-file checks are made if user routine
READTH has defined the variable EOFTH. End-of-file is not considered an error in

itself, but may result in an error if no time points are found in an interval or if a

following interval is requested.

THDATA is called at card MMLE3.61.

A. 2.1.8 COMPAT. - Subroutine COMPAT sets the logical matrix sizes to com-
patible values and checks dimension limits. Cards 24 to 48 determine the matrix sizes

55

A.2.1.8

THDATA

I

Initialize subroutine

Initialize maneuver

I Search forstart time

I
Too many reads

i End-of-file

_1 Found

Yes

_, no

Process time point

I Read nexttime point

Good read]

r

Yes

I oom ny@reads _

End-of-file _-

to be used as described in reference 1, section 3.3.8(11) to (14) and check these

sizes against the dimension limits. Cards 50 to 78 set the appropriate logical sizes
to be used for each of the matrices. Card 79 calls SYM to check GGI for symmetry.
The starting nondimensional matrices and the F and GGI matrices are then printed
out. COMPAT is called at card MMLE3.63.

56

A.2.1.9

A. 2.1.9 ALLOW. - Subroutine ALLOW determines what parameters are allowed

to vary. It also defines maps between different subsets of the parameters. This
information is obtained from the V suffix matrices and constraint matrices. Itis

output from ALLOW in the DETERM and MAPCOM common blocks. ALLOW can be

viewed as translating information from the input format (organized for ease of use)

to the internal format (organized for compactness and efficiency).

ALLOW first initializes several vectors. It then calls VARY to define the

independent unknowns in the N suffix matrices and the F matrix. Cards 41 to 50

add variable initial conditions to the list of independent unknowns as requested by

the input vector VARIC. ALLOW then checks the dimension limit on the number of

independent unknowns.

Subroutine CONSTR is called for preliminary processing of the hard and soft

constraint matrices. Hard constraint processing is then completed by the call to

HARDC. The remainder of the soft constraint processing is done later in subroutine

APRADD.

Cards 59 to 63 determine whether the state noise algorithm will be used. Then

cards 71 to 91 define the maps in common block MAPCOM that are used in the state

noise algorithm. Cards 93 to 97 print the results from subroutine ALLOW.

ALLOW is called at card MMLE3.64.

A.2.1.9.1 CONSTR (CON). - Subroutine CONSTR does preliminary processing

of the soft or hard constraint matrices. The matrix to be processed is the argument.

The matrix names read in to define the constraints are translated into matrix numbers

(see sec. A. 1.1.8) by calls to subroutine MATNO. If constraint ratios were not

specified on input, they are defined from the ratios of the starting values. Error

messages are provided for unallowed matrix numbers and ill-defined constraint
ratios. CONSTR is called at cards ALLOW. 55 and 57.

A.2.1.9.2 GVALVE (IM, IR, IC). - Function GVALVE returns the present value

of any coefficient in the N suffix or F matrices. Input arguments are the matrix num-

ber (see sec. A.I.I.8), row, and column (IM, IR, and IC, respectively). GVALVE

is called at cards CONSTR.27 and 32.

A.2.1.9.3 HARDC. - Subroutine HARDC implements the hard constraints.

Before HARDC is called, the lists in common block DETERM must have been defined

for the independent unknowns. Subroutine CONSTR must have been called for

preliminary processing of the hard constraint matrix. HARDC extends the list in

common block DETERM to include the hard constraints. For each hard constraint,

subroutine LOCATE is called to locate the independent variable of the constraint in

common block DETERM. If the independent variable is found, the constraint infor-

mation is added to the lists in DETERM. The variable NVAR, specifying the length

of the lists in DETERM, is set to the number of independent unknowns during the

execution of HARDC. This is so that the search in subroutine LOCATE will be

restricted to the independent unknowns. "At the end of subroutine HARDC, NVAR is

set to the number of independent unknowns plus the number of active hard con-

straints. An error message is provided for exceeding the dimension limits in

common block DETERM. HARDC is called at card ALLOW .56.

57

A.2.1.9.4

A.2.1.9.4LOCATE (IM, IR, IC). - Function LOCATE returns the index of a
variable in the list of unknowns. The input arguments are the matrix number, row,
and column (IM, IR, and IC, respectively). If the given variable is not found in
the lists in common block DETERM, the value 0 is returned. LOCATE is called at
cards HARDC.19 and APRADD.20 and 21.

A.2.1.9.5 SETCON (CON, AI, IR, IC, AJ, JR, JC, FACT, IFZERO). - Subroutine
SETCON defines a single default constraint in the hard or soft constraint matrices.
SETCON i's intended for use in user routine MATDEF. The first argument is the
hard or soft constraint matrix (HARD or SOFT). AI, IR, and IC specify the location
of the dependent variable in terms of matrix, row, and column, respectively. For
convenience of use, the matrix itself (rather than the matrix name or number) is
used for the second argument. Similarly, AJ, JR, and JC specify the matrix, row,
and column of the independent variable. FACT is the constraint ratio. The last

argument, IFZERO, is relevant only if the constraint ratio given is 0. If the con-
straint ratio given is 0 and IFZERO is FALSE, the constraint will be ignored as
irrelevant. This is the outcome usually desired if the constraint ratio is a calculated
quantity which can validly be 0. If the constraint ratio given is 0 and IFZERO is
TRUE, the constraint will be retained. Subsequent processing by subroutine
CONSTR will define the constraint ratio as the ratio of the starting values. SETCON
is called several times in the standard aircraft routine MATDEF.

A.2.1.9.6VARY (AN, AV, APRA, AR). - Subroutine VARY determines what

coefficients in a given matrix are independently varying. The four arguments are
the nondimensional starting matrix (AN) and its associated variation (AV), a priori
weighting (APRA), and a priori value (AR) matrices. The corresponding V suffix
matrix is searched for nonzero elements. For each such element, the matrix number,
row, and column are stored in common block DETERM; corresponding a priori
information is stored in common block SUMSAV. If there are no independent un-
knowns in the matrix, the matrix name will be defined as DONT; this will prevent
printing the matrix every iteration. Subroutine VARY distinguishes between the

starting values (AN) and the a priori values (AR), although the MMLE3 program
does not currently preserve this distinction. VARY is called at cards ALLOW. 32 to 40.

A. 2.1.10 NEWTON. - Subroutine NEWTON controls the iteration for obtaining
the maximum likelihood estimates. NEWTON is called at card MMLE3.65. The
following are important variables used in the iteration control:

Variable Name Description

ITA Number of iterations remaining until a priori is turned off plus one.

When ITA is O, a priori will either remain on or is already off.
DFAC multiplication (ref. 1, sec. 3.3.8(21)) and G determination

(ref. i, sec. 3.3.8(24)) cannot start until ITA is 0. Ifconver-

gence is achieved while ITA is nonzero, then ITA is set to 0,
a priori is turned off, and iteration continues.

ITD Number of iterations remaining with DFAC multiplication. DFAC

multiplication does not start until ITA is 0. DFAC multiplication

is not done the firstiteration, regardless of ITA, unless FULL1

is TRUE. The convergence testis disabled while DFAC is used.
G determination cannot start until ITD is 0.

58

A.2.1.10

NEWTON)

Initialize I

Yes

I Call G1RL to computetime histories and gradients

i Call RESIDS to print
residual errors

Add o pPiori contribution

I Implement first iterationlinear terms option

Apply diagonal Iconvergence factor

I_o_i_oo_,io_,e_I

Yes

_ Ii° I

I Call GIRL to compute finaltime histories and gradients

i

Call RESIDS to I

print errors I

I
I

I

Call GIRL to

compute time histories

Call RESIDS]
to revise G

59

A.2.1.10

ITGGI Number of iterations until G determination starts. If ITGGI is 0,

either G determination has already started or will not be used

(depending on ITG). ITGGI does not start counting iterations
until ITA and ITD are 0. If convergence is achieved while ITGGI

is nonzero and ITA is 0, then ITGGI is set to 0, and G determina-
tion starts.

CONVRG Convergence indication. CONVRG is set to TRUE when the cost

functional converges within the limit specified by BOUND.
CONVRG is used to turn off a priori, turn on G determination, or

stop iteration, depending on ITA and ITGGI.

The iteration loop is skipped by cards 23 to 29 if NOITER is 0 or if there are no
unknowns. Cards 30 to 33 initialize iteration control variables. Cards 35 to 92

are the iteration loop.

GIRL is called at card 37 to compute the time history and the gradients of the

cost functional. RESIDS is then called at card 39 to compute and print the residual

powers and related quantities. Cards 42 to 44 determine if convergence has occurred;

this determination may subsequently be changed, depending on the options in effect.

Cards 46 to 53 control the a priori option. If ITA (initialized at cards 30 and 31)

is nonzero, it is decremented by 1 each iteration. When ITA reaches 0 or convergence

occurs, a priori is turned off by setting WAPR and ITA to 0; the convergence flag

is turned off so that iteration can proceed with a priori off. On subsequent iterations,

ITA is 0, so this logic is skipped and a priori remains off. If ITA is initially 0, the

code to turn off a priori will never be executed; the a priori weighting will thus
remain at its initial value, which could be zero or nonzero°

Cards 55 and 56 control the call to BIAS to determine linear unknowns only.

Note that the definitions of the convergence flag CONVRG on cards 42 and 86 check

FULL1 or FULLIT to insure that an iteration on which BIAS is called will never be

judged to have converged. Also card 58 checks FULLIT so that the call to DFACT

will be skipped on iterations that BIAS is called. Finally, the call to FLIMIT at
card 68 is not needed on iterations with BIAS because none of the linear unknowns

affect the Kalman gain.

Cards 58 to 62 control the call to DFACT, which implements the diagonal con-
vergence factor option. DFACT is not called until ITA is 0. DFACT is also not

called on iterations for which BIAS was called. For each iteration that DFACT is

called, ITD is decremented by l; the convergence flag is forced to FALSE because

convergence with DFACT is very slow and would often set the convergence flag

before truly converging. After ITD reaches 0 (or if it starts at 0), subsequent
iterations do not call DFACT.

Cards 64 and 65 invert the second gradient matrix and fillin its symmetric,

upper triangular portion. Then cards 66 and 67 compute and print the changes in

the parameter estimates. Card 68 calls FLIMIT ifrequired to implement the inequality
constraints described in reference i, section 1.2.3. Cards 69 and 70 then revise

and print the parameter estimates.

6O

A.2.1.10.1

Cards 72 to 86 do the G determination if requested by a nonzero value of ITG.
This code is not entered until both ITA and ITD are 0. After ITA and ITD are 0,

cards 74 to 76 decrement ITGGI by 1 each iteration until ITGGI reaches 0 or converg-
ence is obtained; either of these conditions triggers the start of G determination.
The call to GIRL at card 82 computes the time history (no gradients are computed at
this call). RESIDS is then called at card 85 to revise GGI based on the residuals.

The convergence is tested at card 86. When G determination is active, each iteration
has two steps: First, cards 37 to 70 revise all of the estimates except for GGI; and
second, cards 82 and 85 revise the estimate of GGI.

Cards 89 to 91 exit the iteration loop if final convergence has been attained.

Card 94 prints a warning message if the iteration limit is reached without attaining
convergence.

GIRL is called at card 98 to compute the final time history and gradients (the
second gradient will be required to compute the Cram6r-Rao bounds). RESIDS,
called at card 100, computes and prints the final iteration residual powers and re-
lated quantities.

A.2.1.10.1 APRADD. - Subroutine APRADD adds a priori terms to the first and

second gradients. Soft constraints are implemented by APRADD as off-diagonal
a priori terms. The upper triangular part of the SUM matrix is used to form the
a priori weighting matrix; the diagonal elements of this matrix are stored in row JKM
of SUM. APRADD is called at card NEWTON. 53.

A.2.1.10.2 BIAS. - Subroutine BIAS causes only bias and control terms (linear
terms) to be estimated in a particular iteration. The logical variable FULLIT controls
the call to BIAS at card NEWTON. 56. FULLIT is defined in turn at card NEWTON. 55

depending on FULL1 and the iteration number. This results in BIAS being called
for the first iteration unless FULL1 is TRUE.

A. 2.1.10.3 DFACT. - Subroutine DFACT implements the diagonal convergence
factor option (ref. 1, sec. 3.3.8(21)). It multiplies the diagonal elements of the
second gradient by DFAC. The calling of subroutine DFACT is controlled by the
input variable ITDFAC (ref. 1, sec. 3.3.8(21)). Cards NEWTON.58 to 62 implement
the logic to call DFACT.

A.2.1.10.4 FADJ (AVG). - Subroutine FADJ adjusts F during G determination.

The intent is to keep the Kalman gain matrix, K, unchanged as closely as reasonable.

On entry, it is assumed that WFRSQ contains the diagonal elements of_GGIold/GGIne w

and that the diagonal FRSQ contains the old GGI matrix elements; both of these quan-
tities were computed in subroutine RESIDS. The input argument, AVG, is assumed

to contain the logarithmic average of the elements in WFRSQ. The algorithm used is
to multiply each row of F by the ratio of the corresponding diagonal element of
ERIAC* GGIol d DIAG (WFRSQ) ERIAC

ERIAC* GGIol d ERIAC where only diagonal elements of GGIol d are used

and DIAG (WFRSQ) is the diagonal matrix formed from WFRSQ. If any element of the
above numerator is 0, the corresponding row of F is instead multiplied by AVG. Only
independently varying elements of F will be changed by subroutine FADJ as controlled
by the loop from cards 33 to 41. FADJ is called at card RESIDS.95.

61

A.2.1.10.5

A.2.1.10.5 FLIMIT. - Subroutine FLIMIT constrains certain diagonal elements

of the closed loop gain K(ER-1A + C) to be less than or equal to 1. The algorithm
and reasons for this constraint are discussed in reference 1, sections 1.1.2 and 1.2.3.

GRADX, GRADY, and GRAD1 are used for scratch storage in this routine. The
subroutine first forms the gradients of these diagonal elements in GRADX. It then
determines which diagonal elements of F are varying, using DUM2X to flag such

elements. Constraints are only made on diagonal elements of K(ER-1A + C) corre-

ponding to unknown diagonal elements of F. Cards 64 to 76 compute the linearized

extrapolation of the diagonal elements of K(ER-1A + C), adding the current value

plus the gradient times PB (the vector of proposed coefficient changes). The rows
of GRADX corresponding to constraints that are satisfied (or the elements that are not
constrained) are deleted, and the remaining rows are compressed into the first JJ
rows of GRADX. Corresponding elements of DUMX are filled with the amount by which
the constraint is exceeded. If no constraints are exceeded (JJ equals 0) the sub-
routine is done. Otherwise, cards 79 to 89 modify PB to lie on the constraint boundary,

approximated by local linearization. FLIMIT is called at card NEWTON .68.

A.2.1.10.6 RESIDS (GIIT). - Subroutine RESIDS does computations based on the
sample residual power. It first computes the filtered and unfiltered sample residual

powers from the accumulated sums at cards 21 to 27. Cards 28 to 37 then eliminate
the effect of any unweighted signals; this is needed so that such residuals do not
affect the inverse and determinant of the residual power. Next, cards 40 to 54

compute and print the weighted errors for the filtered and unfiltered residuals. The
cost functional (unfiltered weighted error sum) is placed in ERRVEC (NITER) and
the filtered weighted error sum is placed in ERRFLT. WRSQ and WFRSQ are the
diagonal elements of the unfiltered and filtered weighted errors, respectively.
Cards 56 to 62 compute and print the log determinant of the unfiltered residual power
using the product of the eigenvalues.

The remainder of the subroutine does the G determination. The subroutine

argument, GIIT, determines at card 66 whether this code is bypassed. The old GGI
matrix is saved in FRSQ. Cards 68 to 72 move the unfiltered sample residual power
matrix (or its diagonal elements only) into the GGI matrix and then invert it. This
is the preliminary value of the new GGI matrix. Cards 73 to 92 then apply relaxation
to further revise GGI; cards 80 to 91 compute WFRSQ as will be required by subroutine
FADJ. After symmetrizing and printing the new GGI matrix at cards 93 and 94, sub-
routine FADJ is called at card 95 if the state noise algorithm is used. FADJ will
adjust F to compensate for the GGI change.

RESIDS is called at cards NEWTON.39, 85, and i00.

A. 2.1.10.7 SPITEM. - Subroutine SPITEM prints the N suffix matrices and the F

matrix. Subroutine VARY controls which matrices are printed by changing some of
the matrix names to DONT. Subroutine SPIT will ignore any matrices which have

DONT as a name. The call to SPITEM at COMPAT.82 occurs before VARY is called;

therefore, allof the matrices will stillhave their proper names and thus will be

printed. The call to SPITEM at NEWTON. 70 is subsequent to VARY; therefore, some

(or all)of the printouts may be omitted.

62

A.2.1.11

A.2.1.10.8 UPDATE. - Subroutine UPDATE updates the parameter estimates. PB
contains the vector of parameter changes to be made. Cards 43 and 44 keep track of
the total change from the a priori value for use in subroutine APRADD. UPDATE
is called at card NEWTON. 69.

A.2.1.11 GIRL (DOGRAD, LASTIT). - Subroutine GIRL computes time histories
and, optionally, gradients. The argument DOGRAD controls whether gradients are
computed; the argument LASTIT controls various output options used only on the
last iteration. Cards 31 to 63 do initialization before entering the case and time loops.
Average dimensional matrices are computed by REAT or DIM2 if needed. If the time
varying option is not used or if test output is requested, the average dimensional
matrices and transition matrices are required, so REAT is called. If REAT is not
called and the state noise algorithm is used, DIM2 is called to compute the matrices

required for computation of the Kalman gain matrix and its gradient by subroutines
KALMAN and GRADK. Cards 50 to 56 test if GGI is diagonal. Cards 66 to 76 initialize
each maneuver and do any output required for the first time point of the maneuver.
Subroutine INIT is called to define the time history initial condition, and GRADIC
defines the gradient initial condition.

The time loop goes from cards 78 to 134. The measured data are read from

scratch file UT1 and, if TIMVAR is TRUE, REAT is called to recompute the dimen-
sional matrices at each time point. The predicted response is computed at cards 82
to 95. The filtered and unfiltered residuals are then computed and summed. The
unfiltered residual is also stored as an augmented column to the GRADY matrix for

convenience in computing the cost functional gradients. If the state noise algorithm
is used, the corrected responses are then computed. The gradients are computed at

cards 123 to 129. Subroutine GRAD computes the gradient of the predicted response
at one time point and stores it in the matrix GRADY. The call to SUMULT at card 129

accumulates the contribution from the time point to the first and second gradients of
the cost functional.

After the case and time loops, cards 137 and 138 move the firstgradient of the

cost functional from row JKM to column JKM of the SUM matrix, as required by the
rest of the program. DIM2 is called to recompute the average dimensional matrices
if required for subroutine FLIMIT.

GIRL is called by cards NEWTON. 37, 82, and 98.

A. 2.1.11.1 CALLAM. - Subroutine CALLAM stores the dimensionalization ratios

in common block AMCOM. It calls user routine MAKEM if appropriate to compute
the M suffix matrices. CALLAM is called from card DIMl.18.

A. 2.1.11.2 DIM1. - Subroutine DIM1 computes the basic dimensional system
matrices. If USEAVG is TRUE, it moves average values into common block BILIN so
that average dimensional matrices will be computed. CALLAM computes the M suffix
matrices, and MAKEL adds in the L suffix matrix contributions. DIM1 is called from
card DIM2.11.

A. 2.1.11.3 DIM2. - Subroutine DIM2 computes dimensional system matrices and
expressions. It calls DIM1 to compute the dimensional matrices. All of the matrix
expressions in the common blocks ECOM and OBSRV are then evaluated. DIM2 is
called from cards REAT. 13, INIT.26, and GIRL .47.

63

A.2.1.11.3

I Define matrices]
as required

Define initial conditions

Read new time point

I Iif time varying

Compute system response

I _°m_ut°an_mIgradients

I
Compute K and |
its gradients I

Error

too big?
Error return)

time point
No

Yes

No Last

case'?
Return

64

A.2.1.11.4

A.2.1.11.4 GRAD. - Subroutine GRAD computes the gradient of the predicted
response for one time point. Cards 23 to 26 compute the variables in common deck
GRADS, used later in the subroutine. The gradients of the predicted response are
then computed using the equations given in reference 1, section 3.1. It is assumed

that, on entry, GRADX contains the gradient of the corrected response at the previous
time point. Cards 30 to 34 zero GRADY and multiply GRADX by the transition matrix.
GRAD1 is used for scratch storage. The loop from cards 35 to 66 adds terms to

GRADX and GRADY for each unknown. Then card 67 adds the (ER-1A + C) GRADX
term into GRADY.

At this point GRADX and GRADY contain the gradients of the predicted state and
observation. If the state noise algorithm is used, cards 72 to 81 add

-K V_ + (VK) (z - _) to the gradient of the predicted x to obtain the gradient of the
corrected x. This is needed for the next call to subroutine GRAD; only GRADY is
required as an external output from GRAD. If the state noise algorithm is not used,
the corrected and predicted states are identical, so the last section of code is skipped.

GRAD is called from card GIRL. 123.

A.2.1.11.5 GRADIC. - Subroutine GRADIC initializes the gradient of x at the
beginning of each maneuver. All elements of the gradient are 0, except those
corresponding to variable initial conditions. GRADIC is called from card GIRL. 73.

A.2. i.11.6 GRADK. - Subroutine GRADK computes the gradient of the Kalman
gain matrix. The results are stored in the triply dimensioned array DK in common

block GRDCOM. GRADK assumes that subroutine KALMAN was previously called to
compute the Riccati covariance matrix, P, and the Kalman gain matrix, KGAIN.

GRADK firstcomputes RIAP as RIA X P, and calls GRADP. RIAP is used both in

GRADP and GRADK. On return from GRADP, the gradient of P is stored in DK.

Cards 25 to 28 multiply VP by CTG = (ER-1A + C)*GGI (computed in subroutine

KALMAN). Cards 30 to 54 then add in the elements of VP(ER-1A + C)*GGI to com-

plete the gradient of K. Finally, DK is printed ifthe TEST option is on.

GRADK is called from card GIRL. 57.

A. 2.1.11.7 GRADP. - Subroutine GRADP computes the gradient of the Riccati
covariance matrix and stores the result in the array DK. It assumes that the matrices

RIAP = R-lAp, RIF = R-1F, and RIFRIF = R-IF(R-IF) * have been computed by the

subroutines GRADK and KALMAN. RIFRIF will be destroyed in GRADP. As discussed
in reference 1, section 1.6, the gradient of the Riccati eovariance matrix is computed
as the solution to a group of Lyapunov equations.

Cards 24 to 58 compute one-half of the constant terms in the Lyapunov equations

and store the results in DK. To get the fullconstant terms, the values stored in DK

would be added to their transposes. Cards 60 and 61 compute the coefficientof _'P in

the Lyapunov equations and store the result in DUM. Cards 65 to 74 perform the real

eigenvector decomposition of DUM. RIFRIF becomes the block-diagonalized DUM

matrix, DUM2 is the matrix of eigenvectors transposed, and DUM3 is the inverse
of DUM2.

65

A.2.1.11.8

The loop from cards 76 to 88 solves one of the Lyapunov equations for each pass

through the loop. Cards 77 to 82 compute the constant term of the block-diagonalized

Lyapunov equation. Then LYAPCB solves this block-diagonalized equation. Cards 84

to 87 transform this solution back into the solution of the original Lyapunov equation.

GRADP is called from card GRADK.23.

A.2.1.11.8 INIT (IT, XT1, U1, Y, V, W). - Subroutine INIT sets the time

history irfitialconditions and biases. The arguments, IT, XT1, U1, Y, V, and W,

are the total time in milliseconds, state, biased control, computed observation, state

equation forcing function, and observation equation forcing function, respectively,

all at the initial time point of a maneuver. Card 16 reads the measured data and stores

them in common block BILIN. Cards 18 to 25 define the default state, observation

bias, and control appropriately for perturbation equations. If TIMVAR is TRUE,

DIM2 is called to compute dimensional matrices at the initial time point. The V

and W vectors are computed for use in defining the computed observations. Card 28

calls subroutine UINIT to redefine the state, observation bias, and control as desired

by the user. Cards 30 to 32 compute the control bias as the difference between the

model control and the measured control at the initial point. Variable initial condition

increments are added and OBSERV is called to compute the initial computed observation.
INIT is called from card GIRL. 68.

A. 2. i. 11.9 KALMAN. - Subroutine KALMAN computes the Kalman gain matrix.

The matrices RIF, RIFRIF, and CTG computed here are used subsequently in sub-

routines GRADK and GRADP. Cards 20 to 22 define the physical dimensions of P,

KGAIN, and CTG. Then cards 23 to 28 compute the matrices of the continuous-time

Riccati equation as follows:

RIFRIF = R-IF(R-IF)*

±
DUM = (ER-1A + C)*(GG*)-I(ER-1A + C) At

Cards 32 to 35 destroy the physical dimension pointer of SUM and define two scratch

matrices in the space occupied by the SUM matrix. RICATC is then called to solve

the continuous Riccati equation. DUM2 and the two scratch matrices defined by SUM

are used for scratch storage matrices in RICATC. The last two arguments of the

call to RICATC are columns of SUM used as scratch vectors in RICATC. The scratch

usage of the SUM matrix here assumes that the physical number of rows of the SUM

matrix is at least two times the physical dimension of the state vector plus one, i.e.,

NI = 2 X MAXX + 1 (see sec. 3). Card 43 multiplies the Riccati covariance matrix

by (ER-IA + C)*(GG*) -I to obtain the Kalman gain matrix.

KALMAN is called at card GIRL. 48.

A.2.1.11.10OBSERV (X, U, ONES, V, W, Y). - SubroutineOBSERV expands

the observation equation. X, U, ONES, V, and W are input arguments giving the

state, control, bias, state equation forcing function, and observation equation

forcing function, respectively. The result is stored in Y. OBSERV is called at

GIRL. 96 and INIT.36.

66

A.2.1.11.11

A.2.1.11.11 REAT. - Subroutine REAT computes dimensional matrices and

transition matrices. It first calls subroutine DIM2 to compute the basic dimensional

system matrices and matrix expressions. Then EAT is called to compute the transition

matrix, PHI, and its integral, DUM. PSI, PSIB, and PSIS are expressions involving

the integral of the transition matrix. REAT is called at cards GIRL. 44 and 80.

A.2.1.11.12 SPIDIM. - Subroutine SPIDIM prints the dimensional system matrices,
matrix expressions, and transition matrices. Subroutine REAT must be called before

SPIDIM in order to define all of the matrices printed. SPIDIM is called at card GIRL. 45.

A. 2.1.12 SUMOUT. - Subroutine SUMOUT handles various output to summarize

a case (not including plotted output). The variable BLOWUP, defined by subroutines

NEWTON and GIRL, is first examined to see if the case has diverged past program

limits. If so, most summary output is skipped, plotting is turned off, and measured

time histories are printed if desired. The rest of the subroutine is only executed if
BLOWUP is FALSE.

Subroutine CRAMER is called at card 18 to compute Cram_r-Rao bounds and

parameter correlations. OUTPUN is called at card 19, depending on PUNCH, to

punch coefficient estimates as required. Both CRAMER and OUTPUN are bypassed
if NOITER is 0. Cards 21 to 34 normalize the residual covariance matrix to obtain

the residual correlations and print them out. The unnormalized covariance matrix

is saved in FRSQ during this computation. Cards 36 to 42 compute and print the

averages and standard deviations of the corrected state estimates. The summary of

the convergence of the cost functional is then printed. Finally, the plotting error

limit is checked; if it is exceeded, plotting is turned off and, optionally, measured
time histories are printed.

SUMOUT is called from card MMLE3.66.

A.2.1.12.1 CRAMER. - Subroutine CRAMER computes the Cram_r-Rao bounds

and estimated parameter correlations. The Fisher information matrix must be in

SUM when CRAMER is called. First the matrices in common block CRMAT are

initialized to 0. Then the SUM matrix is inverted. The loop from cards 28 to 53

places the Cram_r-Rao bounds in the appropriate locations in the matrices in CRMAT.

This loop assumes that the independent unknowns are the first JKMM1 unknowns in

the list in common block DETERM. These matrices are then printed. Cards 64 to 75

normalize the inverse of the information matrix to obtain the estimated correlations,

which are then printed. CRAMER is called from card SUMOUT.18.

A.2.1.12.2 CRSET (AC, AN, ALAB). - Subroutine CRSET initializes one of the

matrices of Cram6r-Rao bounds. The argument ALAB is used for the name of the

matrix AC unless the name of AN is DONT. If the name of AN is DONT, the name of AC

is also set to DONT; this will prevent AC from being printed. CRSET is called at
cards CRAMER.16 to 24.

A.2. i.12.3 ERRTHP. - Subroutine ERRTHP prints the measured time history.
It is called at card SUMOUT.48 if the cost functional exceeds allowable limits. The

data printed are from scratch file UTI, which has already had scale factors, biases,

and modifications from subroutine THMOD applied.

67

A.2.1.13

A.2.1.13 THPLOT (PLTOPN). - Subroutine THPLOT plots time history data.

The data to be plotted are obtained from the scratch file UT2. The argument,

PLTOPN, controls whether the plot file is to be opened by the call to PLOTS at
card 23. If PLTOPN is TRUE, the file is already open, so the call to PLOTS is

skipped. Cards 34 to 44 put the title, start time, maneuver number, and other iden-

tifying information on the plot. Cards 46 to 56 determine the time scale and thinning
used. Then cards 59 to 65 form the time vector and draw the time axis and label.

The bbservations are read into core and plotted up to NCH at a time by cards 67

to 110. Cards 68 and 69 determine how many observations are left to plot (if any).

Then cards 71 to 74 position the file UT2 at the beginning of the maneuver being

plotted. (NIP is the total number of time points in the previous maneuvers.)

Cards 76 to 88 read NCHAN measured and computed observations into the X and XX

arrays, thinning as needed. The minimum and maximum values are computed during

the reading. Cards 92 to 96 determine the scale to be used for a plot. Cards 97

and 98 then plot the label and axis. The time histories are plotted by cards 100
to 105.

Cards 113 to 126 form the IPLT vector which lists the states, controls, and extra

signals to be plotted. XPLOT, NUPLT, and NEXPLT define this information. The

states, controls, and extra signals are treated together as one concatenated vector

throughout subroutine THPLOT. States, controls, and extra signals are read into

core and plotted up to 2 X NCH at a time by cards 128 to 168. This code is similar

to that used for the observation plots at cards 67 to ii0, with the following differences:

First, the IPLT vector is used at cards 146 and 151 to select the channels; second,

only one line is drawn per plot instead of two; and third, the signal minima and

maxima are initialized to 0 at cards 137 to 139 so that automatic scaling will always
include 0.

THPLOT is called at card MMLE3.68.

A. 2.2 Utility Subroutines

The utility subroutines perform general tasks, such as plotting and matrix
manipulation, that are not specific to the MMLE3 program. The subroutines are
discussed in alphabetical order.

A.2.2.1 ABEND. - SubroutineABEND is an error exit subroutine. It reads

60,000 cards from the input file in order to force an end-of-file error. This inten-

tional error is intended to get an error traceback from the system (both IBM and CDC

systems give traceback in response to an end-of-file error). If an end-of-file error

does not occur (only realistically possible if the wrong file is connected to unit

UCARD (ref. 1, sec. 3.2)), the subroutine stops. The return statement is never
executed, but is required by some computers.

A.2.2.2ADD (A, B, C). - Subroutine ADD adds the matricesA andB, placing
the result in C. An error exit is taken if the matrix sizes are not the same. The

physical dimension of the C matrix is assumed equal to that of the A matrix.

68

THPLOT

Initialize

Plot titles, determine time seale

for maneuver, and plot time axis

Read obserwttions into core J

"i
J Seale and plot an obserw_tion I

Yes _

I D_,erminoothorsi_olstoplot]

I _o_Os'_'_ntooo_o!

I SealoanOp'ot_s_oolI

Yes

69

A.2.2.3

A.2.2.3 ADDPAR (A, B, IB0, JB0). - SubroutineADDPAR adds a matrixA into

a partition of a matrix B starting at B (IB0, JB0). An error exit is taken if the

partition involved exceeds the logical limits of the B matrix.

A.2.2.4AXES (XPAGE, YPAGE, AXANG, AXLEN, FIRSTV, SCALE, ANNOT, HGT).
Subroutine AXES draws an axis and annotation; no axis label is included. XPAGE

and YPAGE are the coordinates of the beginning of the axis. AXANG is the angle of

the axis from horizontal, and AXLEN is the length. FIRSTV is the beginning value
for the annotation, and SCALE is the change per unit distance along the axis. ANNOT

controls the placement and orientation of the annotation. Annotation can be placed

on either the clockwise or counterclockwise side of the axis, and it can be parallel

or perpendicular to the axis, according to the following table.

ANNOT Position Orientation

0 Counterclockwise side Parallel

90 Counterclockwise side 90 °

-90 Clockwise side 90 °

+180 Clockwise side Parallel

Other Clockwise side Parallel

HGT is the height of the annotation. The variable TICDST, defined at card 13, is
the distance between tick marks.

Cards 23 to 42 determine the scaling exponent, NEX, and the number of digits

placed left of the decimal point, NDECL. Cards 20 to 22 and 44 to 50 determine the

number of digits to the right of the decimal point, NDECIM, and the total number of

digits including decimal point and sign, NUMLEN. Up to five digits are allowed

before a scaling exponent is used. Cards 52 to 70 compute starting positions and

sign increments for the annotation. XN and YN are the starting pen positions for

the annotation. DXNPOS and DYNPOS are increments added to the pen position if

the annotated value is positive. Cards 72 to 83 draw the annotation values. Then

cards 85 to 95 draw the scaling exponent if needed. Cards 97 to 110 draw the axis

line and tick marks. Negative TICLEN puts the ticks on the side opposite the annota-

tion. If the ticks and annotation are to be on the same side, TICLEN should be

made positive.

A.2.2.5 DIGIT (1). - Function DIGIT returns the character representation of an

integer input argument, I. The input argument must lie in the range 0 to 20 or an

error message will be printed and an error exit taken. The range of legal values

can easily be modified. The ENCODE statement found on many large systems per-

forms the task of subroutine DIGIT with much more versatility. Subroutine DIGIT

is used, however, because ENCODE is nonstandard and, therefore, not available

on some systems.

A.2.2.6DMULT (A, B, C). - Subroutine DMULT multiplies adiagonalmatrixA

times a general matrix B and places the result in C. An error message is printed if

the dimensions of A and B are inconsistent for multiplication or if A is not square.

Off-diagonal elements of A are ignored ifpresent. The physical dimension of C

is set equal to that of B.

7O

A.2.2.7

A.2.2.7 EAT (A, TT, PHI, APHI, A2, A3, NEAT). - Subroutine EAT computes

the matrix exponential eAt and its integral. Series expansion with time scaling is

used (ref. 7). Ten terms are used for the series expansion. A is the matrix which

is to be exponentiated, TT is the time interval, and NEAT is the power of 2 used for

time scaling. On return, PHI is the matrix exponential eAt, and APHI is its integral

_0 t A2 and A3 are scratch matrices.
eASds"

Cards 9 to 20 compute the time-scaled matrix exponential and its integral.
Cards 22 to 32 then double the time interval NEAT times.

A.2.2.SEIGENG (A, Z, WR, WI, FV1, VECTS). - SubroutineEIGENG computes

the eigenvalues and, optionally, normalized eigenvectors of a real general matrix.

EIGENG uses theEISPACK (ref. 6) routines BALANC, ELMHES, HQR, ELTRAN, HQR2,

and BALBAK. These routines use the QR algorithm after balancing and elementary

transformation to upper Hessenberg form (ref. 8). A is the input matrix, which

is destroyed. VECTS is an input argument, set to TRUE ifeigenvectors and eigen-

values are desired, FALSE if only eigenvalues are desired. Z is the matrix of

eigenvalues if VECTS is TRUE, otherwise Z is not used and need not be dimensioned

in the calling subroutine. The vectors are stored in the same order as the eigenvalues.

For complex eigenvectors, the real part is stored in one column, followed by the

imaginary part (corresponding to positive imaginary part of eigenvalue) in the next

column. The complement eigenvector is not stored. WR and WI contain the real and

imaginary parts of the eigenvalues. The eigenvalues are not ordered, except that

complex conjugate pairs are adjacent, with the positive imaginary part first. FVI is

a scratch vector the same length as WR and WI needed only ifVECTS is TRUE. Error

messages are printed if A is not square or if the QR algorithm fails.

Cards 27 to 39 call the recommended sequence of EISPACK routines for the eigen-

values only or eigenvalues and eigenvectors. WI is used for scratch storage and

communication between ELMHES and ELTRAN. WR is used for scratch storage in
BALANC; ifVECTS is TRUE, WRis communicated to BALBAKviaFVl. IS1 andIS2

are used for communication between the EISPACK routines. Cards 41 to 63 normalize

the eigenvectors if eigenvectors are requested.

A. 2.2.9 GET (A, MAX, II, JJ). - Subroutine GET finds the physical and logical

dimensions of a matrix, A. On return, MAX is the physical number of rows, II

and JJ are the logical number of rows and columns, respectively.

Cards 12 to 19 search for the physical dimension flag stored in the first column of

the last row of A. In order to speed this search, a table of previously used physical

dimensions (MAXS) is maintained. The locations of this table are checked first;

then, locations 1 to MAXMAX are checked. Error messages are printed if the table

of physical dimensions used becomes too long (current limit is I0). Cards 28 and 29

find the logical number of columns and rows.

Subroutine GETSET must be called before the first call to GET in order to define

TEST and MAXMAX and to initialize NUMBER to 0.

71

A.2.2 .i0

A. 2.2.10 GETLAB (A). - Function GETLAB returns the name of the matrix

given as an argument, A. If the name location is 0 (common when the name was
never defined), the characters NONE are returned for the name.

A.2.2.11GETP (A, MAX). - Subroutine GETP finds the physical dimension

of a matrix, A. MAX is returned as the physical dimension. If the physical

dimension flag is not found, 0 is returned for MAX. Note that this is different from

subroutine GET, which stops with an error message if the physical dimension flag

is not fouhd.

A.2.2.12 GETPAR (A, B, IA0, JA0, lIB, JJB). - Subroutine GETPAR moves

the lIB by JJB p_rtition of a matrix A starting at A(IA0, JA0) to a matrix B. A and

B may occupy the same location in storage. If the physical dimension of B was

previously defined, it is used as defined; otherwise, the physical dimension of B

is assumed the same as that of A. An error exit is taken if the specified partition

exceeds the logical dimensions of A.

A. 2.2.13 GETSET (MAX). - Subroutine GETSET is the initialization routine for

the matrix manipulation routines. It must be called before any of the other matrix

routines are used. The argument, MAX, is the largest matrix physical dimension

that will be allowed. An error exit is taken ifMAX is less than 2 or greater than 101.

GETSET defines the value, 4HTEST, used for the physical dimension pointers and

initializes the list of physical dimensions to 0. GETSET defines the I/O unit numbers

used by the matrix routines for the card reader (1), card punch (2), and line

printer (3), if they were not previously defined. A warning message is printed if
GETSET defines these values. If the unit numbers are defined in GETSET and are

inconsistent with the unit numbers that should be used, errors will generally result.

A. 2.2.14 IDENT1 (A, MAX, If). - Subroutine IDENT1 initializes a matrix to an

identity. The first argument is the matrix, A; the second argument is the physical

size of the matrix, MAX; the third argument is the logical number of rows, II.

Since the matrix will be square, the number of columns is not needed. Subroutine

ZOTI is called to set up the matrix and initialize it to 0. The diagonal elements

are then set to i.

A.2.2.15 IDIGIT (A). - Function IDIGIT returns the integer value corresponding

to a single-digit, Hollerith character argument, A. A blank is treated as 0; any

other nonnumeric character returns a value of -i. Arguments containing more than

one digit will not be recognized; thus, they will also return a -1 value. The

FORTRAN DECODE statement performs the function of IDIGIT with more generality

but is not available on many systems.

A.2.2.16 IHMSMS (ITM, T). - Subroutine IHMSMS converts time in total

milliseconds to hours, minutes, seconds, and milliseconds. The first argument is

an integer with time in total milliseconds, ITM. The second argument, T, is a

four-word integer output vector with the hours, minutes, seconds, and milliseconds.

A.2.2.17 INV (A). - Subroutine INV inverts a general square matrix, A, in

place. The routine is relatively unsophisticated and will not perform well on ill-

conditioned matrices. The algorithm used is Gauss elimination (ref. 8) with no

pivoting. An error exit is taken if the matrix is not square.

72

A .2.2.18

A.2.2.18LINES (X, Y, NPT, ISKIP, JSKIP, HGT, L). - Subroutine LINES

plots solid or dashed lines through a vector of points. X and Y are the vectors of
the X and Y values to be plotted; NPT is the number of points in these vectors. The
locations X(NPT + 1) and Y(NPT + 1) specify the X and Y values at the origin;
X(NPT + 2) and Y(NPT + 2) specify the X and Y scales in units per centimeter.

ISKIP is a skipping parameter. The absolute value of ISKIP is a thinning parameter
for the data. If ISKIP is 1, all of the data are used; if 2, every second point is
used, etc. If ISKIP is positive, the data are plotted starting at the beginning of
the X and Y vectors; if negative, starting at the end. JSKIP controls dashing and
symbols. If JSKIP is 0, a solid line with no symbols will be drawn. If JSKIP is
positive, a solid line will be drawn with symbols every JSKIPth point. If JSKIP is
negative, a dashed line will be drawn with dashes JSKIP - 1 intervals long and
spaces 1 interval long. A symbol will be put at the beginning of each dash; there-
fore, JSKIP = -1 results in symbols only since the dashes are of length 0. HGT is
the symbol height, and L is the CalComp symbol number (ref. 4).

A.2.2.19 LYAPCB (P, A, C). - Subroutine LYAPCB solves a continuous-time

block-diagonal steady-state Lyapunov equation. The form of the equation is

AP + PA* = C

where the matrix A is block diagonal with 2 by 2 maximum blocks; the 2 by 2 blocks

must be skew symmetric, and both diagonal elements of the blocks must be equal. C
must be symmetric. The first argument, P, is the symmetric solution matrix to

the equation. The second and third arguments, A and C, are square input matrices.
There are no checks on the structure of A and C.

Because of the block-diagonal structure of A, the problem separates into 1 by I,

1 by 2, and 2 by 2 partitions. Each such partition is a linear equation in i, 2, or 4

elements of the P matrix. The solutions to these partitions are coded explicitly,
taking advantage of the properties of A.

A.2.2.20MAKE (X, Y). - Subroutine MAKE copies amatrix. The firstargument

is the output matrix, X; the second argument is the input matrix, Y. The physical
dimensions of the input and output matrices are assumed to be the same (see sub-
routine MOVE otherwise).

A.2.2.21MATLD (A). - SubroutineMATLD reads the body ofamatrix, A,
from the card reader file. The matrix name, number of rows, and number of

columns must be in common block INMAT when MATLD is called. The physical
dimension of the matrix must have been defined previously. The matrix is read one
row to a card in 8F10 format. If the number of columns is 0, the matrix is assumed to

be diagonal, and the diagonal elements are read from one card. After reading the
matrix, MATLD calls subroutine SPIT to print it out.

A.2.2.22 MIL (T). - Function MIL converts time in hours, minutes, seconds, and
milliseconds to total time in milliseconds. The input argument, T, is a four-word
integer vector.

A.2.2.23MOVE (A, B). - Subroutine MOVE moves amatrixA into amatrix B.

The physical dimensions of A and B must be defined before the call and may be

73

A.2.2.24

different. MOVEdiffers from MAKE in the order of the arguments and the treatment
of the physical dimensions.

A.2.2.24MULT (A, B, C). - Subroutine MULT multiplies amatrixA times a
matrix B and places the result in C. The physical dimension of C is assumed equal
to that of A. An error exit is taken if the number of columns of A is not equal to
the number of rows of B. The CPU time spent in MULT is significant; therefore,
it may prove worthwhile to use assembly language versions of MULT.

r

A.2.2.25 MULTT (A, B, C). - SubroutineMULTT multiplies a matrix A times a
matrix B* and places the result in C. The physical dimension of C is assumed equal
to that of A. An error exit is taken if the number of columns of A is not equal to the
number of columns of B.

A.2.2.26 MVMULT (A, B, C). - SubroutineMVMULT multiplies amatrixA
times a vector B and places the result in matrix C.

A.2.2.27PLOP (X). - Subroutine PLOP punches amatrix, X, in standard matrix
format. If the matrix name is DONT, the subroutine is bypassed.

A.2.2.28 PLTDAT (X, Y). - SubroutinePLTDAT puts the date and time on a
plot for plot identification. The arguments are the X and Y position at which the

date and time are to be placed. Subroutine PLTDAT calls the machine-specific
subroutines DATE and TIME to obtain the information from the system clock.

A.2.2.29 REDUCE (A, MAX, N). - Subroutine REDUCE factors a positive definite
symmetric matrix using Cholesky's decomposition (ref. 8) and inverts the factors.
The arguments are the matrix, A; the physical dimension, MAX; and the logical
dimension, N. The matrix is replaced by the factorization on exit. The matrix is

factored into the form L-1DL *-1 , where L is lower triangular with unity diagonal

elements and D is diagonal. On exit, the lower triangular part of the matrix contains
L (except for the diagonal elements, which are not stored), and the diagonal contains
D. The strict upper triangle is not used.

A.2.2.30RICATC (P, A, B, C, DUM, H, E, WR, WI, FV1). - SubroutineRICATC

solves the continuous-time steady-state matrix Riccati equation AP + PA* + B - PCP = 0.
The firstargument is the symmetric solution matrix, P. The second to fourth argu-

ments are the square input matrices, A, B, and C. (B and C must be symmetric.)

The fifthargument is a dummy matrix, DUM, which is the same size as A, B, and C.

The sixth and seventh arguments, H and E, are dummy matrices of physical dimension

at least 2N + 1 by 2N, where N is the logical number of rows at A. The last three

arguments, WR, WI, and FV1, are scratch 2N-vectors.

Potter's method (ref. 9) is used for the solution. Error messages are printed
and the program stops if the Hamiltonian has a 0 eigenvalue or if exactly half of its
eigenvalues do not have negative real parts.

A.2.2.31 ROWCOL (IR, IC, STRING). - Subroutine ROWCOL picks a matrix row

and column number from a string of five characters. The firsttwo arguments, IR

and IC, are the integer row and column number outputs, respectively. The third

74

A.2.2.32

argument, STRING, is an input five-word vector containing one Hollerith character
in each word. The row and column numbers may use one or two characters and

must be separated by a comma. If less than five characters are required, any
nonnumeric character, except a blank, can be used as a terminator. Subroutine

ROWCOL is generally used when matrix locations are being read from cards.

A.2.2.32 SCALE2 (XMIN, XMAX, S, AMIN, SCALE). - Subroutine SCALE2

determines reasonable plotting scales. The first two arguments, XMIN and XMAX,
are the minimum and maximum data values, respectively. S is the axis length in
centimeters or half inches. AMIN and SCALE are output arguments for the minimum
value for the axis and the scale in units per centimeter or per half inch. If the data
minimum is greater than or equal to the maximum, the scale will be set to -999, and
the minimum value for the axis will not be defined. Scales of one, two, or five times

a power of 10 units per centimeter or per half inch will be used by SCALE2. The
scale and minimum value will also be chosen so that the value 0 would appear a

multiple of 2 centimeters or half inches from the beginning of the axis (though it need
not lie within the range of the axis). If both positive and negative values are included,
the axis length should be at least 4 centimeters or half inches to insure that all values

will fit within the range of the axis. The use of centimeter or half inch units depends
on the program's call to FACTOR (sec. 2.5). SCALE2 is not directly affected.

A.2.2.33 SET (A, II,JJ). - Subroutine SET defines the logical dimensions of a

matrix. The physical dimension must have been previously defined. The three

arguments are the matrix, A; the logical number of rows, II; and the number of

columns, JJ. An error message is printed and an error exit taken ifthe logical
number of rows is greater than or equal to the physical dimension.

A.2.2.34 SET1 (A, MAX, II, JJ). - Subroutine SETldefines the physical and

logical dimensions of a matrix. The four arguments are the matrix, A; the physical

number of rows, MAX; the logical number of rows, II; and the logical number of

columns, JJ. An error message is printed and an error exit taken ifthe logical

number of rows is greater than or equal to the physical dimension.

A.2.2.35 SET2 (A, MAX, II, JJ, ALAB). - Subroutine SET2 defines the physical
and logical dimensions of a matrix and its name. SET2 is identical to SET1 with the
addition of a last argument, ALAB, for the matrix name.

A. 2.2.36 SINV (A). - Subroutine SINV inverts a positive definite symmetric

matrix, A, in place. The strictupper triangle of the matrix is ignored. SINV calls

subroutine REDUCE to compute the inverse of the Cholesky factorization (ref. 8).
The inverse factors are then multiplied to obtain the inverse of the fullmatrix.

A.2.2.37 SMULT (G, A, B). - Subroutine SMULT multiplies amatrixAby a
scalar G and places the result in B. A and B may occupy the same storage locations;
they must always have the same physical dimensions.

A.2.2.38 SPIT (A). - Subroutine SPIT prints amatrix, A. If the matrix name
is DONT, the subroutine is bypassed. Matrices with more than 10 columns are
printed in blocks of 10 or less columns at a time.

75

A.2.2.39

A.2.2.39 SSIMEQ (A, B, X). - Subroutine SSIMEQ solves the symmetric linear

system AX = B. A is a symmetric matrix, B is a vector, and X is the solution vector.

Subroutine REDUCE is called to obtain the inverse of the Cholesky factorization (ref. 8)

of A. Then X is computed by multiplying B by the inverse factors. The lower triangle

and diagonal of A contain the factorizations from subroutine REDUCE on return. The

strict upper triangle of A is ignored.

A.2.2.40 SUB (A, B, C). - Subroutine SUB subtracts amatrix B from amatrixA

and plac6s the result in C. An error exit is taken if the physical or logical dimensions

of A and B are not the same. The physica] dimension of C is assumed equal to that of

A and B.

A.2.2.41 SUMULT (A, B, C). - Subroutine SUMULT replaces the matrix Cby

A*B + C. Only the lower triangular and diagonal parts of C are computed. The A

and B matrices are assumed to have the same physical and logical dimensions; there

is no check to verify this however. The physical dimension of C may differ from that

of A and B. A significant amount of CPU time is spent in SUMULT, so it may prove

worthwhile to write an assembly language version.

A.2.2.42 SYM (A, PRNT). - Subroutine SYM checks a matrix, A, for symmetry.

If the matrix is not square, an error exit is taken. If the matrix is square, but not

symmetric, it is symmetrized using the lower triangular part. The logical variable

PRNT controls a warning message. If PRNT is TRUE, a warning message is printed

when A is square but not symmetric. If PRNT is FALSE, the symmetrization is done
without comment.

A.2.2.43 SYMBL4 (X, Y, HGT, TITLE, ANGLE, NCHAR). - Subroutine SYMBL4

performs the same function as the standard call to the CaIComp routine SYMBOL

(sec. 2.5), except that the data are assumed to be stored only four characters per

word. NCHAR characters of alphanumeric data, stored four characters per word in

the array TITLE, are plotted at an angle of ANGLE degrees from the horizontal.

NCHAR is limited to 400; otherwise, only the first 400 characters will be plotted.

The starting position for the plot is given by X and Y. Following the usual CaIComp

convention, X and/or Y may be 999 to indicate that the plot starts at the previous

pen position. HGT is the height of the symbols in centimeters.

A.2.2.44TRANSP (A, B). - Subroutine TRANSP transposes amatrixA and

places the result in matrix B. A and B may occupy the same storage locations.

physical dimensions of A and B may be different. If the physical dimension of B

was not previously defined, it is assumed equal to that of A.

The

Cards 16 to 34 handle the largest square partition of A. This part must be

handled specially since A and B may occupy the same storage locations. Cards 37

to 45 handle the remaining columns of A if A had more columns than rows. Cards 47

to 54 handle the remaining rows ifA had more rows than columns.

A. 2.2.45 UNSET (A). - Subroutine UNSET deletes the physical dimension pointer

from a matrix, A, if it is present. This has the effect of making the physical dimen-

sion of A undefined. UNSET is used if the space in a matrix is to be used for a tem-

porary scratch matrix with a different physical dimension. It is also used afterward,

preparatory to redefining the correct physical dimension for the matrix.

76

A.2.2.46

A.2.2.46VMADD (A, X, B, U, S, ONES, C, V, Y). - SubroutineVMADD forms

the expressionAX+ BU + S ONES + CV and stores the result in Y. A, B, S, and C
are matrices which may have different physical dimensions and logical number of
columns. An error exit is taken if the logical number of rows of A, B, S, and C
are not all the same. X, U, ONES, V, andY are vectors.

A.2.2.47 ZMULT (A, B, C). - Subroutine ZMULT computes the matrix expres-
sion C = C + AB. An error exit is taken if the logical number of columns of A does
not equal the number of rows of B. The physical dimensions of A and C are assumed
equal. ZMULT takes advantage of O's and l's in the A matrix to save time. There-
fore, if A is sparse, ZMULT is quite efficient. For general A matrices, subroutine

MULT may be more efficient. A significant amount of CPU time is spent in ZMULT,
so it may prove worthwhile to use an assembly language version.

A.2.2.48 ZOT (A). - Subroutine ZOT zeros amatrix, A. The physical and
logical dimensions of A are assumed to have been previously defined.

A.2.2.49 ZOT1 (A, MAX, II, JJ). - Subroutine ZOT1 defines the physical and

logical dimensions of a matrix, A, and then zeros the matrix. MAX is the physical
number of rows. II and JJ are the logical number of rows and columns, respectively.

A.2.2.50 ZOT2 (A, MAX, II, JJ, ALAB). - Subroutine ZOT2 defines the physical
and logical dimensions and the name of a matrix, A, and then zeros the matrix. MAX
is the physical number of rows. II and JJ are the logical number of rows and
columns, respectively. ALAB is the matrix name.

A. 2.3 Standard Aircraft Routines

This section describes the standard aircraft user routines. The subroutines
are listed in alphabetical order. Each subroutine is first described in terms of its

general function in the program. The communication to the basic program is
described, and the place from which the subroutine is called is referenced. This
description is intended to guide the user in coding the new set of user routines for
a different problem. After the general description, the standard aircraft

version of each subroutine is discussed. Subroutine WTDEF is called from MATDEF,
and subroutines INTERP and WTTRAN are called from WTDEF. WTDEF, INTERP, and
WTTRAN are never called directly from the basic program; therefore, they do not
have general functional descriptions independent of the standard aircraft routines--

they are merely parts of the standard aircraft routine's implementation of subrou-
tine MATDEF.

A. 2.3.1 AVERAG. - Subroutine AVERAG provides the user routines convenient
access to the time history averages. AVERAG is called at card THDATA.111. This
call occurs after USERIN and before MATDEF. AVERAG is therefore convenient for

defining variables needed for MATDEF, but not read in by USERIN. The averages
are available in common block AVGCOM.

The standard aircraft routine AVERAG obtains QBAR, V, ALPHA, THETA, PHI,

and MACH ifthey were not read by subroutine USERIN. The values 0 and 999,
depending on the variable, are indications that USERIN did not read these variables.

77

A.2.3.2

The channels for ALPHA, THETA, and PHI depend on whether the case is longitudinal

or lateral-directional. The ALPHA computation includes the corrections for upwash

and instrument position. Cards 19 and 20 define the distances that the moment

derivatives and instrument positions must be shifted to reference them to the flight

center of gravity. This computation has no direct connection with the time history

averages in the subroutine supplied; it could just as well have been done in sub-

routine USERIN. It is envisioned, however, that the user might desire to make a

program modification to compute the flight center of gravity as a function of some

extra channel averages. Therefore, no computations are done with the center of

gravity until this point so that such a modification can be readily made.

A.2.3.2 INTERP (ALPHA, NABP, ABP, IA, JA, FIA, FJA). - Subroutine INTERP

computes indices and factors for linear interpolation. Subroutine INTERP is a stan-

dard aircraft routine called only from the standard aircraft routine WTDEF; therefore,

it does not have a general function independent of the standard aircraft routines.

ABP is a vector of length NABP containing the break point values for the inde-

pendent variable. The values in ABP are assumed to be monotone strictly increasing;

no check is made to verify this. ALPHA is the value of the independent variable to

which data are to be interpolated. On return, IA and JA are the indices to be used for

interpolation, and FIA and FJA are the interpolating factors. To interpolate a vector,

DATA, containing dependent variable values corresponding to the independent vari-

able values in the ABP, the expression FIA * DATA(IA) + FJA * DATA(JA) would be

used following the call to subroutine INTERP.

If the value of ALPHA lies outside the range of the ABP values, subroutine INTERP

limits the output to the range given; it does not attempt to extrapolate outside of the

range. Consequently, INTERP will work correctly when NABP is i.

A.2.3.3 MAKEL. - Subroutine MAKEL adds in the contribution from the L suffix

matrices to the dimensional matrices. Itis called from card DIMI.37. On entry,

common block DIMMAT contains the dimensional matrices except for the contributions

from the L suffix matrices. Subroutine MAKEL should compute the L suffix matrices

and add the contributions to the dimensional matrices. The L suffix matrices need

not be stored separately. Common block BILIN contains the logical variable TIMVAR

(ref. 1, sec. 3.3.8(20)) and the measured observations, controls, and extra signals.

The L suffix matrices can be functions of the measured quantities in common block

BILIN. The L suffix matrices should not be dependent on the unknown coefficients,

directly or indirectly (in particular they should not depend on the computed time

histories).

The standard aircraft routine MAKEL computes the matrices described in refer-

ence I, section 4.1.3. Cards 18 to 34 define the variables VT, ALPR, THETR, and

PHIR. If TIMVAR is TRUE, measured values from common block BILIN are used to

define these variables. The statement function ALPHAC corrects the measured angle

of attack for upwash and angular rates. If TIMVAR is FALSE, values from common
block FLCOND are used; these values can have come either from average measured

values or from NAMELIST USER (ref. 1, sec. 4.3.3). Cards 35 to 39 compute trig-

onometric functions of the angles. The lateral-directional L suffix matrix terms are

added by cards 43 to 48, and the longitudinal ones by cards 51 to 54. The variables

DGDP and DGDT defined at cards 45 and 53 are passed through common block GRAV

to subroutine MAKEVW.

78

A.2.3.4

A. 2.3.4 MAKEM. - Subroutine MAKEM computes the dimensionalization ratios,

M suffix matrices. The values computed should be stored in common block MATRAT.

MAKEM is called from card CALLAM.I1. On entry, the M suffix matrices in MATRAT

will be filled with l's. Common block BILIN contains the logical variable TIMVAR

(ref. i, sec. 3.3.8(20)) and the measured observations, controls, and extra signals.

The M suffix matrices can be functions of the measured quantities in common block

BILIN. The M suffix matrices should not be dependent on the unknown coefficients,

directly or indirectly (in particular they should not depend on the computed time
histories).

The standard aircraft routine MAKEM computes the matrices described in

reference I, section 4.1.3. The dynamic pressure, QT, and velocity, VT, are ob-

tained from common block BILIN or FLCOND, depending on TIMVAR. The values

in FLCOND can have come either from average measured values or from NAMELIST
USER (ref. I, sec. 4.3.3).

A.2.3.5 MAKEVW (VB, WB, FIRST). - Subroutine MAKEVW computes the known

forcing functions v(t) and w(t). It is called at cards INIT.27 and GIRL.88. The

formal parameter names used for v(t) and w(t) are VB and WB to avoid confusion

with velocity and weight in the standard aircraft routines. The logical variable

FIRST is TRUE on the first time point of each maneuver so that the subroutine can do

any reinitialization needed. The value of FIRST should not be changed by the sub-

routine. Subroutine MAKEVW will be called at each time point regardless of the

variable TIMVAR (ref. l, sec. 3.3.8(20)). The VB and WB vectors can be functions

of the measured quantities in common block BILIN. They can also be functions of the

L suffix and M suffix matrices computed by user routines MAKEL and MAKEM,

because the appropriate L suffix and M suffix matrices (time-varying or not) will

have been defined before the call to subroutine MAKEVW. The VB and WB vectors

should not be dependent on the unknown coefficients, directly or indirectly (in

particular they should not depend on the computed time histories).

The standard aircraft routine MAKEVW computes the vectors described in

reference I, section 4.1.3. The time-varying velocity from common block BILIN is

used if TIMVAR is TRUE; otherwise, the constant average velocity from common

block FLCOND is used. The angles of attack and sideslip used in the longitudinal

equations are the measured values corrected for upwash and instrument position.

Cards 37 and 64 use the variables DGDP and DGDT defined by user routine MAKEL.

The terms on these two cards represent part of the linearizations of the gravity terms

about the measured values. If the 0 or _ equations are not integrated (determined by

the value of MX, the length of the state vector) the gravity terms must be evaluated

at the measured values instead of being linearized; therefore, the terms on cards 37
and 64 are omitted.

A.2.3.6 MATDEF (WTFILE). - Subroutine MATDEF defines input and matrix
defaults. MATDEF is called at card MMLE3.62. Defaults can be defined in MATDEF

for any of the matrices that can be read from cards. These matrices are found in

common blocks FCOM (F matrix), GICOM (GGI matrix), MATIN (V suffix and APR

prefix matrices and constraint matrix HARD), MATRIX (N suffix matrices), and

SOFCOM (constraint matrix SOFT). Data from common block AVGCOM can be used to

define the defaults. Subroutines USERIN and AVERAG are called before MATDEF, so

any quantities defined in these two routines can also be used (plus, of course, quanti-

79

A .2.3.6

ties defined in ONCE). The formal parameter WTFILE is a logical variable which

indicates whether a predicted-derivative file is available. If WTFILE is TRUE, data

may be read from the predicted-derivative file to be used in defining the defaults.

Subroutine MATDEF is called after the matrices have been read in from cards.

The logical function LOADED can be used to determine whether a particular matrix
was read from cards. The matrix is used as the argument for function LOADED, which

returns a value of TRUE if that matrix was read from cards. Normally, the defaults

for a mati'ix will be skipped if LOADED returns TRUE. MATDEF can define elements

of a matrix, even if LOADED is TRUE for that matrix; such definitions would consti-

tute overrides of the values read from cards. Subroutine SET can be used to define

the logical size of a m_trix.

The constraint matrices, HARD and SOFT, require special mention. The function

LOADED can return a value of FALSE for these matrices even if the matrices were in

fact read from cards. In this case, the default constraints should be used in addition

to the constraints read in. The input cards specify whether the constraints read in

supplement the default constraints in this manner or replace the default constraints

(ref. I, sec. 3.3.11(6) and (7)). In order to implement the convention described in

reference i, section 3.3.11 (6), the LOADED function is simply used in the normal

manner; the default constraints are used if and only if LOADED is FALSE. The user

should be conscious, however, that constraints read from cards can be present even

when LOADED is FALSE. Calls to subroutine SETCON can be used to conveniently

define the default constraints. SETCON is described in section A. 2.1.9.5.

The final values of the variables MX, MZ, MU, andMB (ref. i, sec. 3.3.8(11)

to (14)) in common block SIZE will not have been computed at the time MATDEF is

called because the values may depend on the results from MATDEF. Therefore,

these values should not be used by MATDEF unless itduplicates the logic that will

compute the final values. The standard aircraft routine MATDEF duplicates the logic
that determines MU and MZ at cards 27 to 31, 117, and 118.

The standard aircraft routine MATDEF defines the defaults described in reference l,

section 4.3.5. Card 33 calls WTDEF to define defaults using the predicted-derivative

data if available. Cards 35 to 41 define the default HV for longitudinal or lateral-

directional cases. Cards 44 to 107 define the rest of the lateral-directional defaults,

and cards II0 to 200 define the rest of the longitudinal defaults. The GGI and F

defaults are obtained from common block GFDEFS, previously defined by subroutine

ONCE. The variables DCGFT, ALPHA, and V were defined by subroutine AVERAG.

Most of the remaining variables used in MATDEF were defined by subroutine USERIN.

The cards 116 to 119 require special mention. These cards decide whether to

use the axis transformation to obtain the C L derivatives in the a equation from the C N

and C A derivatives in the an and ax equations. If both a n and ax observations are

used, the program does the axis transformation. If ax is not used, the transformation

cannot be done; therefore the low a approximation C L = C N is used. This approxi-

mation is implemented by setting the variable ALPR (a used for the transformation, in

radians) to 0 at card 119 and defining C L = C N at card 132; the constraints from the
a a

8O

A.2.3.7

fifth row of CN, DN, and HN will automatically be ignored since the derivatives in
these locations will not be unknown. The decision on whether to use the axis trans-

formation or the low a approximation depends on MZ, the length of the observation
vector. The program variable MZ will not have been finally defined when MATDEF
is called. If the program variable MZ has the value -1, it will subsequently be
redefined as the number of rows of the GGI matrix. Therefore, subroutine MATDEF
must check both GGI and MZ to determine what the final value of MZ will be. The
size of GGI is obtained by the call to subroutine GET at card 117. Note that this call

is executed after the longitudinal default GGI matrix is defined at cards 110 and 111.

Cards 203 to 207 override the input or default HV matrices for both longitudinal
and lateral-directional cases. These cards delete unknown biases for observations

that are not weighted. This forestalls the common trivial error of weighting a signal
to 0 and forgetting to delete the signal bias from the HV matrix. The bias is, of

course, not identifiable when the signal is not weighted.

A.2.3.7 ONCE. - Subroutine ONCE does any initializationfor the user routines.

ONCE is called only once at card MMLE3.45 at the beginning of the program, not
for each case. Any user input which is to be read only once should be read in

subroutine ONCE. Predicted-derivative input does not belong in subroutine ONCE;

a separate routine, WTIN, is used for it. Subroutine ONCE is called before any of
the other user routines, including user routine WTIN.

The standard aircraft routine ONCE reads defaults for the GGI and F matrices.
Cards 19 to 25 define the defaults to be used if none are read in. Card 27 reads the
matrix header cards, and card 28 checks for the end card. Cards 30 to 45 determine
which matrices are being read in and call subroutine MATLD to read the matrix
bodies. Common block INMAT passes the matrix name and size from the header card
to subroutine MATLD.

A.2.3.80UTPUN. - Subroutine OUTPUN punches out the estimates and related

information as desired for derivative plotting or other programs using the estimates.
The call to OUTPUN at card SUMOUT.19 is controlled by the NAMELIST variable
PUNCH (ref. 1, sec. 3.3.8(45)).

The standard aircraft routine OUTPUN punches the nondimensional matrices and
Cram_r-Rao bound matrices. Subroutine PLOP is called to punch the matrices. Mat-
rices with no independent unknowns will have DONT stored for their names. Subrou-
tine PLOP will take no action for such matrices. The standard aircraft subroutine
OUTPUN also punches averages, standard derivations, minima, and maxima for the

measured observations, controls, and extra signals.

A. 2.3.9 READTH (INSTAT). - Subroutine READTH reads the input time history
data. READTH is called at cards THDATA.48 and 87. One time frame of data should

be returned in common block RECRD for each call to subroutine READTH. The time

placed in common block RECRD is a four-word integer vector in hours, minutes,

seconds, and milliseconds. The logical variable EOFTH in common block RECRD can

be set to TRUE to indicate that good data were not placed in common block RECRD
because no more data were available. The variable NREC in common block INORD is

the number of data channels to be read. NREC can be ignored ifdesired; itis not

used elsewhere in the program.

81

A.2.3.10

The argument INSTAT gives information about the status of the time history
input. Subroutine READTH should not change the value of INSTAT. INSTAT is 0 on
the first call to READTH for a case. A test for 0 can be used to control initializa-

tion. INSTAT is 1 when the program is searching for a start time, after the first
call to READTH. In a multiple maneuver, there will be a search for the start time for
each maneuver of the case after the previous maneuvers have been read. INSTAT
is 2 when a start time has been found and data to be used are being read.

The Variables ITM and REW in common block TAPPOS give other information on

the input status. ITM is the totaltime in milliseconds of the previously read frame
(ITM is initializedto 0 at the beginning of the program). REW indicates when a

rewind of the time history data fileis advised. Before the firstcall to READTH for

each maneuver, REW is set to TRUE ifthe requested start time for the maneuver is

less than or equal to the previously read time point. On allother calls to READTH,
REW will be FALSE. The action to be taken when REW is TRUE is up to the user and

depends on the filestructure. Usually, this will mean that the desired maneuver has

been passed, and the time history data fileshould be rewound.

The variables CARD and TAPE in common block INOPT are described in refer-

ence 1, section 3.3.8(2). These variables are passed to subroutine READTH to

indicate the source of time history data; they are not used elsewhere in the program.
Subroutine READTH can obtain data from any source; the interpretation of CARD

and TAPE is up to the user. One common usage is to have READTH create a simu-

lated time history.

The standard aircraft subroutine READTH reads data from cards or the time

history input data file,UDATA, as determined by the variable CARD. The file

UDATA can be either a tape or disk file. The fileUDATA is rewound whenever REW

is TRUE and the input is from fileUDATA. The argument INSTAT is not used by
the standard aircraft routine.

A.2.3.10 THMOD (FIRST). - Subroutine THMOD modifies the time history data.

Scale factor and bias corrections can be made using the NAMELIST variables des-
cribed in reference 1, section 3.3.8 (8) and (9). More complicated data corrections
or modifications must be done in subroutine THMOD. THMOD is called once for each

time point at card THDATA. 74, after scale factor and bias corrections to the data,
but before any other operations. The measured time histories printed, plotted,
or used internally in the program are the modified time histories resulting from sub-
routine THMOD. The raw data are not retained.

The logical argument FIRST is TRUE on the firsttime point of each maneuver;
this informs THMOD of time discontinuities that may require reinitialization. The

value of FIRST should not be changed by THMOD. The time history data are in

common block BILIN. The modified time histories should be placed back in the same

locations in common block BILIN.

The standard aircraft subroutine THMOD is a null routine.

A.2.3.11 THOUT (FIRST, IT, X, Y). - Subroutine THOUT writes the output time

history file,UTHOUT. THOUT is called once for each time point at cards GIRL.76

and 120. The logical argument FIRST is TRUE on the firsttime point of each maneuver;
this informs THOUT of points where initializationor reinitializationmay be necessary.

82

A.2.3.12

The value of FIRST should not be changed by THOUT. IT is a four-word vector with

time in hours, minutes, seconds, and milliseconds. X and Y are the corrected state

estimate and predicted observation, respectively. The measured observations, con-

trols, and extra signals are in common block BILIN. Other time history parameters

can be obtained from common block TOGRAD ifnecessary. The logical vector lengths

and physically dimensioned lengths are available in common blocks SIZE and MAXIMS.

Subroutine THOUT can write any data desired to file UTHOUT; that file is not used

elsewhere in the program.

The standard aircraft routine THOUT writes the time, predicted observation,

controls, and extra signals to file UTHOUT. The complete dimensioned lengths of
these vectors are written.

A. 2.3.12 TITPLT. - Subroutine TITPLT puts user-defined title information on

the time history plots. TITPLT is called at card THPLOT. 44 at the beginning of the
plot for each maneuver. The origin when TITPLT is called is 3 centimeters (or

half inches) left of the title and at the bottom edge of the plot. The paper length can
be obtained from common block TOPLOT. The subroutine SYMBL4 (sec. A.2.2.43)
may prove useful in subroutine TITPLT.

The standard aircraft subroutine TITPLT is a null routine.

A.2.3.13 UINIT (X, YBIAS, UMODEL). - Subroutine UINIT defines the initial

condition of the state and the observation and control biases. UINIT is called at

card INIT.28. The outputs of UINIT are X, YBIAS, and UMODEL. X is the initial

state. YBIAS is a bias added to the computed observations to compare with the

measured observations. UMODEL is the initial control of the model. The program

will compute a control bias by subtracting the measured and model controls. The

primary data input to UINIT is the measured data in common block BILIN.

When UINIT is called, X is 0, YBIAS is equal to the measured observation, and

UMODEL is 0. If these values are unchanged, perturbation equations result. A

common alternate choice, assuming the initial state can be suitably defined, is to set
YBIAS to 0 and UMODEL to the measured control.

The call to UINIT is controlled by the NAMELIST variable USERIC (ref. 1,

sec. 3.3.8(26)). IfUSERIC is FALSE, perturbation equations are used.

The standard aircraft routine UINIT sets YBIAS to 0 and UMODEL to the

measured control. The initial states are defined equal to the corresponding initial

measured observations; the measured angle of attack and sideslip are corrected for

upwash and vane position in order to define the initial angle of attack and sideslip

states. The initial measured velocity is used in the position correction if TIMVAR

(ref. I, sec. 3.3.8(20)) is TRUE; otherwise, the average velocity is used.

A. 2.3.14 USERIN (WTFILE). - Subroutine USERIN reads input required by the

user routines for each case. It also does any user routine initialization for the case.

The argument WTFILE is a logical variable that indicates whether a predicted-

derivative file is available. The value of WTFILE should not be changed by subroutine
USERIN. USERIN is called at card EDIT. 117 after EDIT has defined the defaults for

NAMELISTINPUT (ref. 1, sec. 3.3.8) and the channel labels (ref. 1, sec. 3.3.9).

Therefore subroutine USERIN can change the defaults defined by subroutine EDIT.

83

A.2.3.15

The standard aircraft routine USERIN reads the NAMELIST USER described in

reference I, section 4.3.3. It also changes several of the defaults set in EDIT as

described in reference l, section 4.3.6.

Cards 49 and 50 redefine the USERIC and NREC defaults (ref. 1, sec. 3.3.8(6)

and (26)) of subroutine EDIT. Then cards 51 to 99 define the defaults for NAMELIST

USER. The defaults defined at cards 71 to 90 are redefined at cards 91 to 98 from

the predicted-derivative file if such a file is available. WTCG, defined at card 94, is

not used,unless a predicted-derivative file is available.

The NAMELIST USER is read at card 101. Card 102 forces SHIFT (ref. 1,

sec. 4.3.3(2)) to FALSE ifno predicted-derivative data are available, and card 103

forces LATR to be consistent with LONG (ref. i, sec. 4.3.3(1)). Cards 104 to 106

define the acceleration of gravity depending on METRIC and divide the weight by the

acceleration of gravity to obtain the mass.

Cards 107 to 154 redefine the subroutine EDIT defaults for the channel numbers

and labels. Most of these defaults depend on whether the case is longitudinal or

lateral-directional. These cards also process the UVAR defaults (ref. 1,

sec. 4.3.3(22)). Since theUVAR defaults depend on LONG, which is not known

until after UVAR is read, the treatment of these defaults is somewhat unusual.

UVAR was initially (cards 51 and 52) set to -999. Then cards 116, 117, 136, 153,

and 154 apply the defaults to any UVAR elements that were not read in (those that

are still-999).

Finally, cards 156 to 165 print out all of the information read by USERIN.

A. 2.3.15 WTDEF (MUSE). - Subroutine WTDEF obtains derivative estimates

from the predicted-derivative file. WTDEF is called only from the standard aircraft

routine MATDEF; therefore, it does not have a general function independent of the

standard aircraft routines. The argument, MUSE, is the length of the control vector

that will be used in the equations.

Cards 18 to 24 position the predicted-derivative file and read the relevant header

information from it. Then cards 25 to 27 compute interpolating factors and indices to

interpolate the data to the ALPHA, MACH, and PARAM in common block FLCOND.

Cards 28 to 32 compute DO-loop limits dependent on the interpolation indices.

Cards 34 to 80 loop to read and interpolate the predicted-derivative tables.
Cards 34 to 39 read a derivative header card and decide whether that derivative will

be used. A derivative is not used if the type (LONG or LATR) is wrong or if the

matrix where that derivative goes has been read from cards. The function LOADED,

used in subroutine MATDEF to determine if a matrix has been read, is not convenient

to use here since LOADED does not take the matrix name for its argument. Therefore

cards 38 and 39 substitute for the LOADED function. Card 38 calls the function
MATNO to obtain a matrix number from the matrix name. Then card 39 uses the matrix

number as an index for the vector of input flags stored in common block MATLAB to

determine if the matrix has been read. If a derivative is not used, the program goes

to statement number 290, which skips that derivative table and jumps back to process
the next derivative. Cards 40 to 60 read through a predicted-derivative table and

interpolate using the interpolating information computed earlier. Up to eight values

84

A.2.3.16

from the table are used in the interpolation (two break points each for ALPHA, MACH,

and PARAM). Fewer values may be used if only one break point is used for one or

more directions. Card 42 interpolates between the two angle of attack break points

at the first Mach number and parameter (param) break point. If two Mach number

break points are used, card 46 interpolates between the two angle of attack break

points at the second Mach number break point and first param break point; then

card 47 interpolates between the two Mach number break points. If two param break

points are used, cards 49 to 56 repeat the logic of cards 40 to 47 for the second param

break point, and card 57 interpolates between the two param break points. Cards 58

to 60 skip any remaining cards in the predicted-derivative table to position the file

at the beginning of the next derivative table. Cards 61 to 77 place the interpolated

value in the appropriate matrix location as specified on the predicted-derivative
header card.

After all of the values from the predicted-derivative file have been placed in the

matrices, card 82 calls subroutine WTTRAN to do any required transformation on
the data.

A. 2.3.16 WTIN. - Subroutine WTIN reads predicted-derivative data from cards

and writes a predicted-derivative file. WTIN is called at card MMLE3.53 after user

routine ONCE but before any of the other user routines.

The standard aircraft subroutine WTIN reads the data in the form described in

reference i, section 4.3.2 and writes the predicted-derivative file in the form

described in reference I, section 4.2.2. The primary processing involved is to

reorder and expand the simplified data tables read in from cards. The expanded and

reordered forms are simplest to interpolate for later use, but it is preferable to
allow more flexibility in the input formats.

Cards 27 to 30 read and write the title card for the data set. Cards 19 to 21,

31, and 32 define defaults for the variables in NAMELIST WIND, and card 33 reads

the NAMELIST. These data are written on the predicted-derivative file by cards 38

to 42. The break points are read from cards and written on the predicted-derivative

file by cards 44 to 49. Optional printed output is done by cards 50 to 61.

Cards 63 to 126 constitute the primary operations of the standard aircraft routine

WTIN. These cards read a derivative data table from cards, reorder and expand the

table in triply dimensioned array BDAT, and write the data to the predicted-
derivative file and the line printer file.

This part of the subroutine repeats for each derivative table until an end card is

found. Cards 63 and 64 read a derivative header card and test for the end card.

Subroutine ROWCOL is called at card 65 to translate the character string "SUB" into

integer row and column numbers. This information was read in as a character string

to allow more freedom in the input format than the FORTRAN ! format specification.
Subroutine ROWCOL is described in section A. 2.2.

The derivative functional dependence, FS, is described in reference 1,

section 4.3.2.6. Cards 66 to 69 set FS to the default, AMP, if blank was read in.

The variables I1, J1, K1, I2, J2, and K2 are used to expand the derivative table.

I1 to I2 are the indices of the angle of attack break points to which a single input

85

A.2.3.17

value will be copied. If the input data are not a function of angle of attack (i.e.,
none of the FSvalues are A), Ii will be 1 and 12will be NABP so that each data
point read will be copied to all of the angle of attack break points. If the input data
are a function of angle of attack, 11and 12will both start at 1, indicating that the
first data point read will be copied only to the first angle of attack break point; for
subsequent data points, 11and 12will be incremented whenever a new angle of attack
break point is being processed. Similarly, Jl and J2 relate to Machnumber break
points, and K1 and K2 relate to param break points.

Incrementing is done in the order specified by FS. First, the dimension
specified by FS(i) is incremented, corresponding to different fields on one input
card. After all of the break points of the FS(i) dimension are done, the FS(2) di-
mension is incremented by l, and the FS(1) break points are redone for the second
FS(2) break point. FS(3) is incremented as the outermost loop. The variable
INDEXkeeps track of which dimension is being incremented. Whenall of the data
have been read in, the expanded array BDAT is written on the predicted-derivative
file and optionally printed. The program then loops back to process the next deriva-
tive table.

A.2.3.17 WTTRAN (AXIS, MUSE). - Subroutine WTTRAN does various trans-

formations on the data obtained from the predicted-derivative file. WTTRAN is

called only from the standard aircraft routine WTDEF; therefore, it does not have a

general function independent of the standard aircraft routines.

The standard aircraft routine WTTRAN transforms longitudinal stability axis

derivatives to body axes, computes CN0 and CA0 from total C N and C A , and trans-

forms moment derivatives from reference to flight center of gravity. The argument

AXIS should be either "STAB" or "BODY" to indicate the axis system (stability or

body, respectively) of the longitudinal data. The argument MUSE is the number of
controls to use in the transformation. If the longitudinal data are already in body

axes, the transformation from stability to body axes is skipped. The lateral-

directional data are always assumed to be in body axes, regardless of AXIS. The

logical variable SHIFT in common block INERTS controls the center of gravity
transformation. If SHIFT is FALSE, the moment derivatives are assumed to be already

referenced to the actual flight center of gravity, so no transformation of them is done;

any difference between the values given for the flight and reference center of gravity

is ignored.

Just as in subroutine MATDEF, the LOADED function is used to determine if a

matrix has been read in from cards. Subroutine WTTRAN does not change any

matrix that was read from cards; its transformations are intended only for defining

default matrices using the predicted-derivative file.

Cards 20 to 36 do the transformation from stability to body axes for the longitudinal

data. The transformation for the angle of attack derivatives on cards 34 to 36 assumes

that total C N and C A are in HN (4,1) and HN (5,1). Therefore, this code must be after

the transformation of C L and C D to C N and C A (cards 29 to 32) and before the compu-

tation of CN0 and CA0 to replace C N and C A (cards 39 to 43).

86

A.2.4

Cards 39 to 43 compute the extended CNo and CA from total C N and CA by0

subtracting the linearized contributions of the angle of attack and control derivatives.

The pitch rate contribution is not subtracted because the total CN and CA predictions

are assumed to be given for zero pitch rate, even though the maneuver may actually

have a significant average pitch rate. Note that the CNo and CAo computed are

functions of the angle of attack. They are consistent with the usual definition of

CNo and CAo only if a is 0. We often refer to the program's quantities as CNo and

CAo extended, to distinguish them from the usual definition.

Center of gravity transformation is done by cards 48 to 55 for lateral-directional
data, and cards 58 to 65 for longitudinal data. The longitudinal transformations
assume that the derivatives are in body axes; therefore, this code must follow the
stability-to-body axis transformation.

A. 2.4 EISPACK Routines

The EISPACK routines used by MMLE3 are BALANC, BALBAK, ELMHES, ELTRAN,
HQR, and HQR2. These subroutines are exactly as obtained from Argonne Labora-
tories and described in reference 6, with one exception. Cards 103 and 104 of HQR
and cards 127 and 128 of HQR2 have been modified to increase the maximum number

of QR iterations from 30 to 50. We have found cases where the routines require
more than 30 QR iterations to converge to the specified accuracy on CDC computers.
The individual subroutines are not described here, as adequate documentation is

provided by reference 6. The EISPACK routines are called only from subroutine
EIGENG.

The variables RADIX and MACHEP in subroutines BALANC, HQR, and HQR2
are machine dependent. These variables are discussed in section 2.4.

87

A-Index

INDEX OF COMMON DECKS AND SUBROUTINES

Page

Common decks

AMCOM 38

AVGCOM 38

BIASES 38

BILIN 38

COM 39

CRMAT 39

DETERM 39

DIMMAT 39

DUMCOM 40

DUMVEC 40

ECOM 40

ERLIST 40

FCOM 40

FILES 40

FLCOND 49

GFDEFS 49

GICOM 41

GRADS 41

GRADS 41

GRAV 49

GRDCOM 41

GRSIZE 41

HEADNG 42

HISTORY 37

ICOND 42

INERTS 50

INMAT 42

INOPT 42

INORD 42

INSTR 50

INTEGR 43

KCOM 43

LONLAT 50

MAPCOM 43

MATIN 43

MATRAT 44

MATLAB 44

MATRIX 44

MAXCON 44

MAXIM 44

MAXIMS 44

MODCOM 45

OBSRV 45

OUTOPT 45

PBCOM 45

PHICOM 45

RECRD 46

RICCOM 46

Page
Common decks--Continued

SIZE 46

SOFCOM 46

SUMCOM 46

SUMSAV 47

TAPPOS 47

THPLOT$ 47

TODATA 47

TOGIRL 48

TOGRAD 48

TOPLOT 48

UVCOM 50

VARDEF$ 49

XSUMS 49

Subroutines

ABEND 68

ADD 68

ADDPAR 70

ALLOW 57

APRADD 60

AVERAG 77

AXES 70

BALANC 87

BALBAK 87

BIAS 60

CALLAM 63

COMPAT 55

CONIN 53

CONSTR 57

CRAMER 67
CRSET 67

DFACT 60

DIGIT 70

DIM1 63

DIM2 63

DMULT 70

EAT 71

EDIT 53

EIGENG 71

ELMHES 87

ELTRAN 87

ERRTHP 67
FADJ 60

FLIMIT 62

GET 71

GETLAB 72

GETP 72
GETPAR 72

88

A-Index

Page
Common decks--Continued

GETSET 72

GIRL 63

GRAD 65

GRADIC 65

GRADK 65

GRADP 65

GVALVE 57

HARDC 57

HEAD 53

HQR 87

HQR2 87

IDENT 1 72

IDIGIT 72

IHMSMS 72

INIT 66

INTERP 78

INV 72

KALMAN 66

LINES 73

LOADED 55

LOCATE 58

LYAPCB 73

MAKE 73

MAKEL 78

MAKEM 79

MAKEVW 79

MATDEF 79

MATLD 73

MATNO 55

MATSET 53

MIL 73

MMLE 3 51

MOVE 73

MT LOAD 53

MTSET 53

MULl' 74

MULTT 74

MVMULT 74

NEWTON 58

OBSERV 66

ONCE 81

OUTPUN 81

PLOP 74

PLTDAT 74

Page
Common decks--Continued

READTH 81

REAT 67

REDUCE 74

RESIDS 62

RICATC 74

ROWCOL 74

SCALE2 75

SET 75

SETCON 58

SET1 75

SET2 75

SINV 75

SMULT 75

SPIDIM 67

SPIT 75

SPITEM 62

SSIMEQ 76

SUB 76

SUMOUT 67

SUMULT 76

SYM 76

SYMBL4 76

THDATA 55

THMOD 82

THOUT 82

THPLOT 68

TITLES 53

TITPLT 83

TRANSP 76

UINIT 83

UNSET 76

UPDATE 62

USERIN 83

VARDEF 51

VARY 58

VMADD 77

WTDEF 84

WTIN 85

WTTRAN 86

ZMULT 77

ZOT 77

ZOT1 77

ZOT2 77

89

B

APPENDIX B

PROGRAM COMSUB

Program COMSUB performs common deck substitution. Users with access to
CDC UPDATE (ref. 2) or other similar utility packages will not need to use COMSUB.

It reads the UPDATE source cards described in section 1.1, substitutes the common

decks in appropriate places, and punches the resulting FORTRAN decks.

No input cards are necessary except for the UPDATE source cards.

The program card and cards 43 to 46 of COMSUB can be altered as desired to

define the file numbers for the card reader (UCARD), card punch (UPUNCH), line

printer (UPRINT), and UPDATE source cards (UDATA). COMSUB does not use the
file UCARD. The file UDATA can be assigned to the card reader, a disk, or tape

file, depending on how the source data are available.

The maximum number of common decks allowed is i00, and no more than 200 total

cards are allowed for all of the common decks. These dimension limits are easily

charged on the dimension statement at card 38 and in the definitions at cards 47 and 48.

Program COMSUB requires an end-of-file check. The comment cards describe

how to configure the program for IBM or CDC end-of-file conventions. Only three

cards are affected. Alternately, the program can omit the end-of-file checks and

watch for a card with "*END" in the first four columns to flag the end of the source

deck. This alternative is not machine dependent, but does require that the *END

card be at the end of the source data.

Cards 54 to 60 initialize the common deck counts to 0 and read the first card.

This first card must be a *COMDECK card, or the program will do an error stop.

Cards 62 to 69 start a new common deck. The number of common decks is incre-

mented by 1 and checked against the maximum. The common deck name is stored in

CNAMES. A pointer in ICARD1 is defined to point to the first column in the matrix

CDECKS included in this common deck.

Cards 71 to 79 read a common deck, storing each card in a column of the matrix

CDECKS. A dimension limit check is made on the number of columns allowed. Any

card with a star in column 1 will be assumed to be an UPDATE directive, and thus

will define the end of the common deck.

Cards 81 to 87 finish the storing of a common deck and decide whether more

common decks follow. A pointer in ICARD2 is defined to point to the last column
in CDECKS included in the common deck. The UPDATE directive that follows the

common deck is then examined. If it is a *COMDECK directive, another common deck

follows, so the program loops back to read the new common deck. If it is a *DECK

directive, the common decks have all been read, and the program continues to

the next section. Any directive other than *DECK or *COMDECK will be flagged as

an error and the program will stop.

9O

B

*COMDECK

COMSUB)

I Initialize J

Start new common deck

Read to end of common

deck and store it

Print deck name

Other

I Read card]

I PUNCH card

*END

I
Search for matching
common deck name I

Punch copy of
common deck

91

B

Cards 89 to 117 read and copy the remaining source cards, substituting common

decks as called. Card 91 is used in the IBM version; card 92 is used in the CDC and

machine general versions to read a source card. Card 93 is the CDC end-of-file

check. When IBM end-of-file is detected, the program jumps to statement 800, and

a card stillremains to be processed; therefore, the variable LAST is defined at

card I19, and the program jumps back to finish processing the last card.

Ifthe card that is read does not have a star in column i, cards 95 to 97 copy

it to the punch file and loop back to read the next card. Cards 94 and 98 to 101

decide on the processing of source cards beginning with a star. If an *END card

is found, processing is terminated. If a *DECK card is found, the deck name is

printed out, and the card is otherwise ignored. If a *CALL card is found, common

deck substitution is done. Any other card beginning with a star is copied to the

punch file without special treatment.

Cards 103 to 117 perform common deck substitution when a *CALL card is

detected. Cards 104 to 107 search the list of common deck names for the requested

common deck. If a matching name is not found, the program stops with an error

message. Cards 111 to 117 punch a copy of the common deck and jump back for

processing of the next source card. Note that zero length common decks are allowed,

in which case no cards are punched for them.

92

B

PROGRAM COMSUB(INPUT'E_eePUNCH-51ZpOUTPUT-2_8eDATA._12e
" 1APEloINPUT,TAPE2-FUNCH,TAPE3=nUTPUTeTAPE6=OATA)

C

C RICHARD E. _AZNE q JAN 7q
C PROGRAM TO CREATE FCPlRAN SOURCE bECKS FRGH UPDATE _UURCE DECKS.
C READS IN COPMON OECKS FCLLOWED BY REGULAR DECKS.
C iUBSTITuI¢$ CONPON CECK_ INTO REGULAR DECKS AS CALLED FCR.
C PUNCHES _tT RESULTING S_BSTITUTE_ DECKS.

C END-OF-FILE]S CHECKER BY ONE OF THREE NETHOOS.
C 1) COD TYPE EOF FUNCTION (INDICATES _D OATA WAS RETURNED ON
C PREVIOUS PEAD)

C F3R THIS TYPE _cCK, THE CARD FLAGGED IBM IN COL. 73 SHOULD
C HAVE k C In CEL. 1 SLNCE COC _OMPILER$ _G NOT RECCGNIZE
C THE SYNTAX CF TP|b CARD. THE CARDS FLAGGED WITH COD IN
C COL. 73 _HDLLD LEAV_ CbL. 1 BLANK.

C E) I_M TYPE END- PARAMETER (BRANCHFS IF DATA JUS1 RETURNED WAS
C LAST R6C3RD IN FILE)

C FOR THIS TYPE CHECK, THE CARDS FLAGGED CDC IN COLe ?3 SHOULD
C HAVE A C IN CCL. i ANO THE CARD FLAGGED WITH IBM IN C_L. 73
C SHOULD B_ BLANK IN COL. 1.

C 3) FOR ANY MACHINE - PROGRAM _HEGWS FOP A DATA CARD CONTAININC
C eEN_ START1NG IN CCL. 1.

C THIS CHECK 1_ ALWAYS VALIDe BUT REGbIREb IHE APPRCPRIATE
C CAW& TO BE AT T_E END OF THE DATA DECK. THE PROGRAM CHECKS
C FOR THIS CONDITION IN EITHER THE CCC OR IBN CONFIGURATIONS.

C Fdg A HAC_ZEE GENERAL PROGRAM THAT CSES ONLY THIS CFECK,
C PUT M C |N COLe 1 OF CARDS FLAGGED WITH EITHER COD CR |g_
C IN COL. 73 XCEPT FUR THk ONE CARD ALSC FLAGGED kITH AEYe
C

C LIMITATIONS, OZMENSIOE LIMITS
C PAX hUMBER OF COPPCN DECWS 1S 100 (hCOPMXI
C MAX TOTAL hUMBER Of CARDS IN COMMON DECKS LS 2u9 (NCRDNX)
c

INTEGER UCARU,UPUNCH,_FRINT,UOATA
LOGICAL LAST

D_McN$[ON CbECKS(ZIeZLO)eCNANES(_elOO)eICARD_(IOO)_ICARO_(_OO),
COMCRD(Z1),CAAP(E2)

DATA SIARIIH_I,CDMD_ECKI_HGOMO_3HECKI,bECKI_HDFCKI,GALLI_HCALLI,
ENDI3HENDI

C
UCARD •
UPUNC H -
UPRZNT • 3
UDATA • ¢
NCRDMX • POO
NCU_MX • 100
NCPbN • O
L_ST • .FALSE.
WR_TP(UPR_NT,30OO)

C *e*******_ INITIALIZE AND READ FIRST CAkC.
NCQMS = o
NCARD • o

READ(UDATAeIO01) COMCRC
IF(COMCRD(1).EO.STAfi .AND.

- COMCRD(Z).EQ.CO_C BAND. COMCRDI3).EQeECK) GO TO 1C0

COPSUB
CONSUB
CCNSUB
CO,SUB
CO,SUB
CO,SUB
CO'SUB
CO,SUB
CCMSUB
C_PSUB
CO,SUB
COMSUB

CGPSUB
CO,SUB
COPSUB
CO,SUB
COPSUB
CONSUg
ca_sue
COPSUB
COMSUB
CO,SUB
CCMSUB
CO,SUB
CO,SUB
CO,SUB
CO,SUB
COPSUB
CCPSUB
CC_SUB
CCPSUB
COP_UB
COPSUB
CO'SUB
CON_UB
COPSUB
CCPSUB
COPSUB
COPSUB
CO'SUB
COPSUB
CO,SUB
CONSUB

CC_SU_
COMSUB
CCBSUB
COPSUB
COPSUB
CONSUB
CO,SUB
COPSUB
COMSUB
CCPSUB
COPSU_

CDPSUB
CDPSUB
CCNSUB

E
3

6
?
8

10
11

13
16

le
17
Ie

ZO
El
22
23
;'6
ZS
26
Z7
2B
29
30
31
32
33
3_
3_
36
37
38
3g
_O

63
66
65
_,6
67
68
6c_
50
51
5Z
53
56
5_

5e

58

93

B

WRITE(UPRZN1,30Co) CUPCPO COPSUB 59
STDP COPSUB 60

C ***_**_**_ _TER1 NEW CEPEUN DECK. CCFSUB 61
100 NCOM_ • NCOPS+I COPSUB 62

ICEkOIINCLM_) • NCk_D÷I COPSUB 63
wRITE(OPRI_I,3OGI} _CC_SJCCMCRC(_],C_MCgDiSIeICAkPl(N¢O_S) COP_UB 6_

IF(NCCMS.LE.NCOPMX) GC TC _1_ COPSUB 69

WKITE(UPPINT,_C2| NCCPMW CCPSUB b6
$TCP CCPSUB 67

110 _NA_ES(lpNCCMS) = CEMCED(6) COPSUB 6e

_NAME${_COMS) - CCMCk_(5) COMSUB 69
C _*e_e_* REED TO END CF COMMON OECK. CO_SUE TO

ZCO REEO(UOATAJIO01) COPCED CCPSUB ?1

IFICOMCKD(1),E_,STAR) _L TC 3vO CO,SUB 7Z
N_ARD = NCAkO÷l CCPSUB T3

IF|N_ARD.LE.N_RLNX) GL 10 Zlu COFSUB 76

wRITE(_PEINT_30G31NCRD_X CO,SUB T_

STOP CGPSUB 76
_I0 DO ZZO l=l,?l COPSUB 77

Z2_ CDECK$(I_NCERD) • CCMCRD(I) COESUB 78

GO TO ZuO COFSU_ 79

C ****#***ee END CF C_MP_N DECK. COPSUB 80
3_ ICERD2(NC_MS) • NCE&D CGPSUB 81

IF(COM_RDIZ).EQ._CMC .AkO. COMCRC(3I,EQ,ECK) GG TC I0C COPSUB 82
IFICOMCRDIZ).£Q.bECW) GC TO 350 CO,SUB 83

WRII_IUP_INT_3Ok6| C_PCRD CO,SUB 8_

ST_P CO,SUB 89
3_9 CARD(_) - CCWCRDI3) CC_$UB 06

_ERD(5} • C_MC_I_) CO,SUB B?

C _,_,ee,_,_e_**ee_**e _EE_ ENU COPY OECK_. COPSUB 80

0 WR1TE(UPRINT_3u_) CAE_(_I_CERD(5) CO,SUB E9
_ZO IF(LkST| GO TO qOC COPSUB qO

C REA_(UOATE_OGZeEND=800) CEkD IR_ CCPSUB 91

READ(UDATA,_002) CAEO CDC INY COESUB 92

_FIEOFIUO_TE].NE.O.) GO Tfl 900 CDC COPSUB 93
_30 IFICERD(1).EO.STER) GC TO _50 CDP$UB 96

66_ NCPUN • NCP&TN÷_ COflSUB _

WgLTEIUPUNCH_IU_ZI CE_P CO,SUB 9_
GO TO _ZO CCPSUB q?

0 IF(CARO(Z)sEO,EhD) GO T 9_0 COPSUB 98

IF(C_RD(Z).LQ.UECK) GO TO kO0 COPSUB _q
IF(_aRDIZ),EO,CELL) G_ TO _UO CO_SUg 100

GO TO _G COM$UB 201

C _e*#**_*** _EARCH FCR CELLE_ COMMON DECK, COPSUB 102

500 WR_TE(UPR|NT_3OGb) CERC(_IeCARD(g) COPSU_ 103
O0 550 ICOM=I,NCOMS CO,SUB 106

IF(CERD(_).EO.CNAME_(I,ICOM) .END. CEkD(5).EQ.CNEMES(Z,ICEM)| CCMSUB 109

- G_ TC 600 COPSUB 106

550 CqNTINUE CO,SUB 1_7
wRITE(UPRINT_3vOT) COeSU@ 108

STO_ CCeSUB 109

C *e******_* FUNCH CELLED COMMbH DECK. C_PSUB 110

6_9 NCCRDS • ICERGZ(Z_OMI-ICERDZ(ICO_)÷Z COMSUE 111

|F(NCCRDS.EQ.u) G_ 10 _20 CO,SUB 112

NCPUN • NCPUN÷NCCEDS CO_$UB 113

ICRD1 - IC_KDI(ICCM) CO,SUB 116
ICROZ • ICARO?(ICCM) COMSU_ 115

94

H

c
80o

900
C

1001
1002
30C0
3Unl

_RITc(UPUNCH,aOC1) ((CCECKS(J,I)nJ-Is21)_I=ICRDI_ICkD2)
_O TO _20

oe***e*e*e*ee,e_eo,e ENC-OF-FILE PROCESSING.
LAST • oTeUE.
GO TO _30
WR%TE(UPRIMT;3ulO) NCPU_

FORMAT(AlplgA6pA3)
FGRHAT(A1,A6,A1J18A6pA2)
FCR_AT(MICOHSUR PROGR_ F_R INSERTING C_NON DECKS'l)
FORMAT(n C_HON OEC_"p%6tIX,2A6_" START_ AT CARDn_%Sp", m)

4gf12 FORMAT("O$$# kRROR, L|M|I OF"*TSp" COMMON DECKS REACHED, m)
30_ FOR_ATIMOe,ee ERP_Re LIMIT OF-;]6_ M TOTAL CARDS ZN COPMCN DECKS "e

- "RtACHED.")

3006 FOR_AT(mO$$$$ ERRORe DIRECTIVE NOT RECOGNIZED - MSA;$1Od6pA3)
3U05 FORMATi"O_ECK "_2A6p" BEING PRCCEbSEDe")
3306 FORMAT(" CALLING FOR _CMEON DECK "_2A4)
3007 FUR_AT(RO_ EREOR. ABOVE COHRUN DECK NOT RECOGNIZEC. a)
3)CB F_RMAT("U$$$ ERROR, F]R$1 CAkD IS NOT A VALID CDhDECK CARCoM/

_X_AZ_lgA6;A_)

301_ FORNAT("OTOTAL CF"_Ibe" CARDS PUNCHED.")
STOP
END

COPSUP
COPSUB
COeSUB
CO,SUB
CO,SUB
CCPSUB
CORSU8
CO,SUB
CONSU8
COeSUB
CO,SUB
CO,SUB
CO,SUB
CO,SUB
CO'SUB
CDNSU_
CCPSUB
C_SUB
CO,SUB
CO,SUB
CORSUB
COPSUB
CO_SU_

117
118

1;:0
121
122
129
124

125
126
12?

lZe
129
130
131
132
133
134
135
136
137
13B

95

C

APPENDIX C

PROGRAM COMPUN

Program COMPUN punches common decks for the MMLE3 program, substituting

in the desired physical dimensions. Used in conjunction with program COMSUB

(appendix B) or CDC UPDATE (ref. 2), COMPUN allows the physical dimensions of

the MMLE3 program to be easily changed as discussed in section 3.2.

The file numbers used by COMPUN can be altered by changing the program card

and cards 61 to 64. The input to COMPUN is on two separate files. The card reader

file (UCARD) contains the NAMELIST IN, which defines the physical dimensions to

be used. The variables in NAMELIST IN are described in the comment cards.

The file UDATA contains a template for the common decks. UDATA can be

assigned to the same file as UCARD, in which case the template would follow the

NAMELIST in the input cards. The template consists of the common decks (complete

with *COMDECK cards), except that symbols are used for the dimensions. COMPUN

will copy the template to the punch file, with the appropriate values substituted for

the symbols.

Each symbol used in the template consists of a star followed by a two-character

name. The two-character names used are described in the comment cards. COMPUN

will substitute a two-digit value for the two-character name and a blank for the star.

If more than two digits may be required for the value, a star should be placed after

the two-character name in the template as well as before it. A four-digit value will

then be substituted in the locations of the two-character name and the two stars. The

template must have no stars after column 8 except for those used as described above.

The end of the template is indicated by a card with "*END" starting in column 1.

Cards 66 to 79 define the default dimensions and then read and write the NAME-

LIST. The default values for the dimensions are the values used with the MMLE3

program as supplied. Cards 81 to 87 check several limitations on the allowable dimen-

sions. These limitations are described in the comment cards. Cards 89 to 94 define

dimensions computed from the basic dimensions read in NAMELIST IN. The loop at

cards 97 to 107 converts each of the dimension values to four Hollerith digits.

Cards 110 and 111 read a card of the template and check to see if it is the *END

card. Cards 120 to 134 insert two- or four-digit values in the places specified by

the template.

The program listing for COMPUN is shown below, followed by a listing of the

template.

96

PRCGEAfl CCMPUN(CO_PUN,RESIZEpINPUT,OUTPLTp
- TAPE4"C_MPUE,TAPES-RESIZEp

- TAPEZ'INPUT,TAFE3-L_TP_T)
C

¢ PUNCHES _MLE3 CbEMCN DECKS CR UPDATES

C PROGRAM LAST MDbIFIED 15 AUG 79 RICHARD MAINE
C

C |NPUT VARIABLES IN kAPELIST IINI

C (CORRESPONDING Z CNAEAC]ER NAMES IN PARENS).

C MAXX - MAX NC CF SLATES (X)
C .AXZ - MAX NL CF CBSERVATIONb (Z)

C MAXU - HAY ME CF CCNIRbL INPUTS (U)

C MAX8 - MAX N[CF 81J_ INPUTS (B)

C LEW - MAX KO OF EXTRA SIGNALS (EX)

C NI - MAX NL OP INDEPENDENT UNKNOWNS * 2 {NIl

C MAXIV - MAX NQ OF LkKNEWN$ AND CONSTRAINTS (1_)

C MA_KV - MAX NO O_ _NKNOWNS AFFECTING K (KV)

C _AXHRD - MAX NC CF HARb CONSTRAINTS + I (HE)

C PJXSFT -NAX N[CF $&FT CbNSTRAINTS * I (SF)

C NTPLI - MAX T|PE POINTS FOR PLOTTING • _ (TP)
C N_P - N_ OF SigNALS IN CORE FOR PLPTTIhG ($)
C

C COMPUTED VAEIABLES AND 2 CHARACTER NAMEel
C (Xl) • NAXW+I

C (Zl) - NAXZ÷|
C (UX) • WAXU+LEX

C (PL) • HAXX÷MAWU4tEX
C (_[) • NSP÷I

C (S2) - Z*NSP
C

C LINITATIONS

C qECAU!E OF PROGEAM ASSUPPTiON$ IN USING SCRATCH NATEICES.
C PAXZ ,GE, MAXX

C BECAU3E DF PINIMUP SPACE REQUIRED FUR MATRIX STORAGE CONVENTTONI,

C MAXX ._E. 4
C NAXZ .GE. 4

C MAXU ,GE.

C NAXB ,_E, 4

C NI ._E. 4

C FuR STATE NDISE CASE EktY, IN SUBR&UTI_'E KALRAN;

C COMPUN PRINTS A WARNING FOR VIOLATING THIS, BUT D_ES NOT STOP.
C NI ,EE. 4ehAXX÷4

INTEGER UCAED,UPRINIpCDAIApbPUNC_

INTEGER A(bGI*B(2JZCIp_(4_20)_VAL(2b),NUMIL_)
INTEGER BLANK*EN&*STAR

EQUIVALENCE (MAXXwVAL(Z)I,(MAWZ,VAL(_IIe(MAXU_VAL(3)Ie

- (NAXB_VAL{4)),(LEX,VAL(SI)_(NI,VAL(_I)_(MAXTV_VAL(7))_
- (NAXKV_VAL(B)),(_AXHRD_VAL(gI)_(MAXSFT_VAL(1Q))_

- (MTPLT_VAL(,ll)_(NSP_VAL(_2))
DATA _IARIIH_I, BLANKIlh /,ENDI4H_ENDI_

- BIZH_IH _IHZ_ZH _IHU,]H _HP_H _IHE_IHX_HN_ZHI_IHI_IHV_

- 1HK,IHV, ZHH, IHD, IHS,ZHF,ZHT,IHP,IH$,IH ,iHX,ZHZ, Z_Z,ZHI,

- ZHU,IHX,IHP,IHL, IHS,IHZ,IHS,IHZe6_IPII

_AMELISI /IN/ NAXX,_AXZ,_AXU,_AXB, LEX_NIeMAXIV, MAXKV_MA_HRC,
- WAXSFTeNTPLTeN_P

CDPPUN

COPPUN
CO'FUN

CQHPUN

CO'PUN

COEPUN
CO'PUN

CO'PUN

CO'PUN

COPPUN
CO'PUN

C_PPUN

C_PUN
CCPPUN

CCPPUN

CCPPUN
COPPUN

CCPPUN

CO,PUN

CQ_PUN

CO'PUN

C_PPUN
CO'PUN

CDNPUN

CO,PUN
CCePUN

CO,PUN
CO,PUN

CD_PUN

COPPUN
CCMPUN

CO,PUN

CO,PUN

CO,PUN

C_PPUN

COPPUN
CCFPUN

CCPPUN

CCEPUN
CCPPUN

CO,PUN
COMPUN

COPPUN

CCPPUN
CCPPUN

CO_FUN

CCPFUN

CONPUN
CO,PUN

CQPPUN

CCPPUN

CCPPUN

CCPPUN

CO,PUN

CGPPUN
CCPPUN

C_PPUN

2

3
4

6

T
8

q

10
11

12
13

1,4

17

le
lg

20

22

2_
;'4

2_

27

;'8

2(;
3o

32

3_

37
]8

41

42
4_

4q

4_
4(:

47

AB

kq

_0

51

_4

5(:

57
58

97

C

]0

100

110

****************************** FILE hU_SFRS.

UCAWD - I

UPRINT - 3
UDATA • 4

UPUNCH •
****************************** DEFAbLTS AhD INPLT,

MAXW - 7

MAXZ = 8
WAXU = 4

MAXB •

LEX • CG

NI • 35

qAXTV - 50
_AXKV • 15

MAXHRD • 3b

NAXbFT • 11
NTPLT • IZOZ

NSP • 3

REAOiUCA_rpIN)
WRITE(UPWINI, IN)

******_******_****** CHECK LIMITATIONS.

IF(PAXX.GT.PAX?) GD TC ZLU

IF(NAXXoLT.4) GC TO ZQD

IF(MAXZ.LT.4) GL TO 2CQ

IF(MAXU.LT.4) GL TO 2DO

IF(_AWB.LT.4) GC TO 2_0

I_(NI .tT.¢) G_ TO ZGO

IF(NI.LT.4eqAXX*4) WRITE(UPRINI93004)

****************************** DEFINE COPPUT_O OUANIlTIES,

VAL(_3) • MAXX_I
VAL(14) - MAXZ+I

VAL(15) • MAXU÷LEX

VAL(Z_] • MAXX+PAXU+LEX

VALiI7) • N_P+I

VAL(18) • 2_NSP

NB • 18
****************************** CONVERT TG CHARACTER,

OC I0 I•I,NB

II,VAL(I)II@Ou

J=VALII)-II*_O00
I2=JIlOO

J=J-I2*ZO0

13-JllO
I_-J-I3_10

V(IPT)-NU_{I_+I]

V(2tl)-NUP(T?+I)

V(3,I)-NUM(13+I)

ViAe_)-NUM(]_÷I)

****************************** READ TEMPLATE,

READ(uOATA,IO0¿) A

IF(A(1).EQ.END) GO TC 500

I-2

I-I+l

_F(I.LT.bA) GO TC 1ZQ

WRITE(UPUNCHpIOQI) A

CCPFUW _

CDPFUN 6C

CCPFUE 61
CCPPUN 62

COEFUN 63
CCPFUN 64

COPPUN 65

COPPUN 6_
CC_PUN 67

COPFUN 68

CO_PUN 69
COPPUN 70

CCFPUN 71

CO,FUN 72

CQFPUN 73

CCPPUN 74
CC_PUN 75

COPPUN 76
CO_PU_ 77

COPPUN 7e

COPPUN 79
CQ_FUN BC

COPPUN Bl

CO,PUN 82
CCPPUN 83

CCFPUN 8_

CCPPUN 85

CO,PUN 86

CC_PUk B?
COPPUN B_

CCPFUN 8q
CO,PUN _0

CC_PUN 91
CC_PUN g2

CC_FUN 93

CC_PUN gk

CO_FUN 95
CO,PUN 96

CC_PUN 97

COMPUN 9B

C_PUN 9_

COPPUN 100
CO*PUN 101

CCFPUN 102
CCPFUN 103

CCPFUN 104

CC_PU_ IG5
CCPPUh]06

COPPUN 107

CGMPUN 10_

COPFUN log

CCPPUN 11@
¢OFPUN 111

COPPUN lie

COFPUN 113

CCFPUN 11_
CC_PUN 11_

98

C

1. 3_,

C

4CO
4_0

C

5C0
C

WRITE(UPRINTp2OOZI A
GO TO I_

|F(A(I),NE,STARI GO TC _10

*_te***e*********e, INSERT OIMENSTONS WHERE INDICATED,

DO 130 J-ItNB

IF(A(I+I),NE.BflpJ) .C_. A(I+2).NE._(_pJ)) GO TO 130
IF(I(I+3I.E_.STA_) GO IC 12_

A(I)-BLANW

A(I+21-V(4_J)

I-I*3

GO TO II0

A(I)-VIIJJ)

A(I+I)-V(2,J]

i(I*Z)-V(3,JI

AII+3I=V(_*J)
l-I*4

GO TO 110

CONIINbE

¢¢¢¢¢¢¢¢¢¢¢¢*¢¢¢¢t¢¢¢¢¢¢¢¢¢¢¢¢ ERROR EXIT.

WRITE(UP_INT, ZO01) A(I*I),AiI÷Z),I,A

GO T_ 4_0
WRITE(bPRINlp30C3)

DD 450 I-lploO00

READ(UCAWD,IO01) A

****************************** NORMAL EWIT,

WEWIN_ UPUNCH

FDRMAT(2A4t6¢AI)

2001 FORMAI("O_R_OR UNWNCWF VARIABLE "pZAI,*' I_ COLUMN"_I3p"¢?"I

- IX,ZA4,b4AI)

2_C2 FO_MAT(_X_2A_64A1)

30¢3 FDRMAT("Otte_ _RRORo INPUT VARIABLbS NCT WITHIN ALLLWED LIP/TS._

- " S_E FRDGRAF LISTING F_R LIMITS, ")

30C4 FORMAT('O***** WARNIN_. NI IS TO_ SMALL FCR STATE NCIS_ CASED")
ST_P

END

CCPPUN

CC_PUN

C_PPUN
COMPUN

COPPUN

COMPUN
COmPUN

COPPUN

COMPUN
CDFPUN

COMPUN

C_MPUN

COPPUN
CCMPUN

COMPUN

CO'PUN

CC_PUM
COMPUN

CDPPUN

CCMPUN

C_PPU_

COMPUN

CCPPUN
COMPUN

CDFPUN

C_MPUM
CCPPUN

CC_PUN

CO,PUN

CCMPUN

CDMPUN

CCMPUN
CCPFUN

CO'PUN

C_PPUN
CD_PUN

C_PFUN

lie

117

118

11g
12o

121

122
123

1z4

lZ_
12t

127

lZe
IZg

130

131

132
133

134

13_

13_
137

141

14_

14;

1_

]47

14g

151

99

C

ecnqqEcK HT_TQgY
C _n_Y_ICATION HTS1_RY:

q _= MODTFICATIONS,

QCOqD¢CK LqCOR
_qq_q IANCONI 8CONST(*TV)

eC_MOECK _vqCON
CnN_N IAVGCOMI ZAVG(*Z)_UAIG(*U)pEXAVE(eEX)_ZSIG(eZ)_

- USIG(eU)_EWS_G(*EX)pZNINM(*Z)_UNLNM(eU)pEXMINN(eFX)p

- YMAXM(*Z)$UMAXM{*U)_bXMAXM(eEW)

oCt_HnEcw _TkSES
C_Nq_N I_IASFSI UOFF(*U)eYOFF(*Z]

tC_'_D©C_ IILIN

C3,_ IBILIN! USEAVGJTI_VAR.Z(*Z ItU(*U)_EXIR_(*EX)_ONES(*B)

tn_T_L USE_VG_TINVAP

eCOqOFC_ -qw

_qNqnq ICON/ _CASE,NPTT, N_TS(l_ItITNSTE(15)

*CPw_cCK C_wAI

Cqwq_q ICgMATI _C(eXI_X)_BC(*XI_*U)_C(_XZ_B)_RC(*WI_*W 1.

- CC(*ZI_tX I,nc(*z_*U);HC(*ZI_*B)_EC(*l_;*X)_FCItXI_tW)

e.P(_tqO¢CK _CT_RM

&CONSTieTV)

_Oq_q_ /D|WMATI A (eX]e*X),B (#Xl;eb);S (eXl_B);R (eXl_eX)_

" (*Z&_eX)eO (eZl_C),H (*Zl_eR)eE (eZI_*X)

*.COqDFCK DUwCO_
Cgwq_q IDUMCOMI DLINf*XI,*X).OUMZ(tXleeX)eOUN3(e_le*X)

e_ON_Cv 3!I"VEC

eC_W_FCK PC_M
Cqwqq_ IFCOql RI_(*XI.*X).RIB(eX,_tU)._IS(*XI.*B).RI(*XI;eX)

eeOqOPCv _LIST

CO_qOq IERLISTI BLUwUPeNITEReEWRVEE{_O)

Lq_rC_L BLOWUP

ePCNnCCK cC_M
c_qq_M IFCOql F(eXI**X)

eCPq_rCK CTLES

CqW_ /FZLESI UC_RD_UPUNCH_PKINT,UCA]A_II,_I2_1HOUT_UWleLPLqT
I_TE_ER UCknD_UP_N_H_UPRINT_DAT_,LTI_LT2_]HOUT_wT_UPLOT

COqqOq IGICOMI ITGeOIAGGeFREQCR,RLXGeFCI_FC2,ERRFLTeSGNLSe

- _I(*ZI,eZ),RSQ(*?I;*Z)_FRSQ(eZI_*Z]_WRSOC*Z),WFRSQ(eZ)

LOGICkL DI_G_

eCPqqECK R_kDS
C_qqN IfiRAD$1GRAOX(eXI_*NI)eGRADY(*Zle_N_IeGRADZ(*Z_eeNI)

eCDMDECK q_kOS

OIWE_ION X_T2(*X)_xoT12(ex),xTl_(*x)

eCCq_rCV GenCqM
C_q_q /GRDCO_I DW(*XI.*Z _*KV)

eC [7_ _CK _SITE
COWqqN IGRSIZEI J_NRIeNK

eC ONOECK gr&DNG
C_WqON IHE&O_GI TITLE(ZGI.AD&IE_ATIME_

- _IGLAB(_.*Z I_XLAB(Z.*W).CONLAB(Z_U).EXL_B(?_eEX|

eCOWDECK IC_NO

COw_nq IICONDI U_ERIC.V_RIC$.VIRIC(*W),_XIC(eX)

LO_ICtL U_CR]C,V&R]CSeV_R]C
eC_wOPC_ TNNAT

CONN_N IINNkTI tLkB_&I,JJ_Ie

tCOWOE_K TN_Pl

e_ON IINOPT/ C_RO_TAPE

tO_t_&t CAR_TAPF
eCOqO¢Cx tN_RD

CqwW_N IINOROI NREC_ZCHAN(eZ)_UCH_N(eU)_EXCHAh(eEX)

TW?E_ ZCH&N_UCMAN_EXCH_N

C_wW_ IINTEG_I CTtNE_T

_POqOreK KC_M

PONqqq IKCOM/ P($_*X),KGAIN(eYleeZ |

_Ett _GA_N

ee_wO_K _&PCON

CONNON INAPCOM/ _&PUKI*IV)eRAPKG(*KV)

e_Pqp_C_ _IIN

- _PRA(*Xl_eW),APRB(*XZ_*U);APR$(_XZ_*B)_PkR(eXleeX)_

- _PRC(eZI,eX),APKD[*ZI,_U),AFRHt*ZJ_*P);APRE(*ZleeX)e

- tPRF(*_];eY)$HAKDIeHD_7)

I00

C

e_OqDE_V _AT_AT

Cqw_qq IMATRaTI JN(*XZs*X)_BM(*Xip*t)s_M(*X|peB)pRMfeX|pex),

- _M(*Z_te_)pO_(*Zls*U teH_(eZ_t*_)pEP(*ZlseX)
eCOM_FC v N_TLAR

Cg_qq /MATLABI EwATSPLAB(31)pINFL&G(31)
Q_AL LAR

eCr.nEcv W_TeIx

Cnww_ /_ITRIXI AN(eX_seX)_N(*Xlpe_ Jp_N(*XI,tB)JRN(eX_peX)p
- _N(_ZI,eY)_ON(*ZI_eU),HNftZI_tB)eEN(_Zlw#X }

*CC_nFCv _AXC_N

COwH qq IM_XCONI P&XHED_M_XSFT

ecPwnEev qAYlM$

Qnqd_q /"_YI_$/ P_XX,M&XZ_MAVU,M:XB,LEY_LO_O
eCPwn=Cv _q_Cg_

*q_qN /HODC_M/ UW_
L_Te_L u_no

tCPq_rCK q_¢_V

C_q_q I_B_VI _RI_C(*_I_eX)_FRIBD(*Z_e_)_ERISH(tZlet_)e
- _IfeZt,*W)

e_O_Or_],ITOPT

cqwN_N IOUTOPTI FRINTXtPRINTY, PRINTO_PLGIE_,PLNCH_IE$I,PLTMAx,

tOql'CiL PRINTX,P_INTY_PRINT_PLOTCP_PUNC_1EST_ERRTH
eCOq_CK _COR

QqW_qN IF_C_]_/ PR(eNI)
*CCe_OEC_ PqtcnN

C_qqON /PHICOM/ P_I(eXI_*x),P$|(exl,ex),F$IB(exl,eU)_
- PSIS(tXl,e_)

eP_OFCK _CCRO

C_Wq_N IOECROI ECPTH_Tf_)_RECOEO(1¢¢)
L3_I_IL EOrTH

tNT_R T

*CO_OcC_ _TCC3M

Cqqq_q IRICCOMI DUMXZ(*XI,eZ),DUMZX(*ZleeX],

- _I&P(eXI_*_ }_CTG(*X|**Z)_R_F(eXI#tX)pRIFRZF(*XI_eW }
eCOW_Fe_ _T_E

P_W_ON /SI_FI q_eMZ_MU_MB

eC_NBcQK _cCOM

eCO_OrC_ _UuCO_

COqq_q I_UNCOM/ JKM_SUM(*NI_tN|)

e_Oq_aCK _LImSAV

CO_qOq I_UMSAVI DIAGON(*NI)*APkDIF(eNI)_WAPR_ITAPR

qqNqq ITAPPD$/ IT,REW

t_GTC_L REW

eeOWOE_W TqPL_TS

_IWPN_ION Z(eZ)_ZZ(eZ)_DC(*PL)_IPLT(ePL)_VMIN$(*SZ),VRAXS(eS2),
TI_E(eTP*),XXX(eTP*_*_Z)_X(eTpt_e$)_X(*TPe;e$)

EQIJI V& LE NC r (X(1_1 1, XXX(1,Z))_ (XX(l_l),X_X(l_eSl))
C

qTOLT-tTP_
qC_=eS

¢COMoEC_ _nOkT*

CqNqqN IY_OATAI STCfI_)eET_(xS)_THIN_PRIN11_NAXREC,

- _BIAT(*Z)el_BIi$(eU),EXSIAS(eE_I_ZSCALEIeZ)_USCALEIeU)_
- FXSC_LteEW)

INTC_ER THIN_STC_ETC
LqqtTCkL PRINT!

e.COMOECK _q_I_L

Pn_qnN IT3GI_LI 8UUNO_ER_MAX_FULLI_NOITER_OFAC_ITDFAC_$N_ISE
LqGTPiL FULLI_SNEISE

e_wOECv _qqRk_

c_qqqq /TOGRAD/ XTIIwX)_XT2(*X),XH2(ex)_

- Vl(ex)eVZ(*x),VIZ(eX),UZ(eU),bZ(*_),U1Z(*U),
- Y(eZ)_ZMY_(_Z)_ZMYFLT(eZ)_W(eZ)

eCn_O_CK T_PLQT

COwqq_ IIOPL_TIZPAxt*z)eZNZh(eZ),X_AX(tX)_UMAXItU)_EXM=X(eEX}_

qlN(*),UNIN(eU)eEXNIN(eEX)_WPLQI(tX)_NUPLTeNEXPLIe
TIRESC;R_TIC,PAPER

LORICtL XPL3T

101

C

iC OM D¢_I< VA_DEFS

qi_(T • tZ
qixJ • eU

LEI(- *E_

NI - eNI
qikWTV - OTV
qIxKV • #KV

qkXHRO • eHO
qk_$FT - eSF

e(" OqDE_.K _$_1H$
e.eJ_MqN IXSUM$1 XSUM(e_)pXZSUM(eX)

iC OqOcCX rtC clqn
£:_qq(]N /FLCONDI CBAR,V_THETA,PHIJALPHA,I_&CFPPARAM,CG,G

q_L _ACH

CflMqqq IGFDEFS/ GGIL&T(eZI.,,*Z)j, GGILLN(*ZI.pSZ)I'FL'ZT(_=XI='*x 1='
_ rLON(el(leeX 1

eC f_ DFC_ _RkV
_.,IMMnH /GRkV/ OGCTeDGDP

eC C_DFeK TNFRT$
Cf'l_qOH IINE_T$1 |X_=,Iyelz,plXZ.pIXE,MAS$.pAREAeCHOR[_.eSP&hgwTCGmSPIFT

RrtL T X, IY,I Z, IX Z, IXFe_&$5

LrlGTC_L SHIFT
C O OEr. K l M_; TR

COqqOH IINSTRI KALF_'KB_'XALF_ XI_X&N-'XAXeX_I_'¥ALF'_YB'_Y'zNeYAX_¥_Y_

- 7*LF_, Z_,_, ZAN, ZAX_, ZAY_,OCGFT

qC_,L K_LF_WR

eC Fqt_c_K L_NL&T
Cqqqqq ILqNLAT/ L_INC,_LATR

L3GtCkL Lr]NG =,LATE

_C t'lq_r_v _IVC_M
_.Oqqe]N IUVC")MI UV&R(_U)

tNTC_CR UVAR

*ENn

102

APPENDIXD

D

TEST CASES

Four test cases are provided for the MMLE3 program. These test cases were

chosen to illustrateand check out several features of the program. This appendix

contains descriptions of the test cases. The input cards and output listings are
shown in supplement 2 on microfiche. Slight changes may be necessary in the

NAMELIST format for different systems. The format shown is for CDC systems. For

IBM systems, the dollar signs in the NAMELISTS should be changed to ampersands.
The options and input variables illustrated in these test cases are all described in
reference i, sections 3.3 and 4.3.

D. 1 One-Dimensional Test Case

The firsttest case uses the basic program. The system analyzed for this case
is one-dimensional

_c(t)= Ax(t) + Bu(t) + Fn(t) x(O) = 0

:

The true values of A, B, F, and G are -1, 10, 2, and 1, respectively. The
input is a square wave with a period of 2 seconds; its value is 0 for the first second

and 1 for the second second, repeating thereafter. Ten seconds of data at 100 samples
per second are used. A pseudorandom number generator is used to create the state

and measurement noise signals. Subroutine READTH is modified to compute the data
for this test ease, instead of reading a data file. This test ease can be used to experi-
ment with ways to easily implement modifications on partieular computer systems.
The case can also be run without modifying READTH by computing the data with a

separate program. The modification instruction for READTH are shown in supple-
ment 2. These modifications also add subroutine GAUSSN to generate the pseudorandom
noise. The resulting modified READTH and GAUSSN are shown in supplement 2 after
the modification instruetions. Note that no measurement noise is included in the

first time point. Next in supplement 2 are the input eards and output listings for
the case.

The following options and features are used in this test case. The data channel

numbers are specified in the NAMELIST, as the defaults are not correct for this case.

Note that CARD, TAPE, and NREC (ref. 1, see. 3.3.8(2) and (6)) can be ignored
sinee they are not used by the modified READTH (and are never used outside of
READTH). If (instead of being computed in READTH) the data for the test ease are
computed by a separate program and stored on a file, CARD, TAPE, and NREC will
be relevant. ITG is set in order to turn on G determination, and the maximum total
number of iterations is set to 10. Note that the program converges with G fixed be-
fore the seventh iteration, triggering the start of the G determination. Final conver-

gence is then aehieved and the program stops well before reaehing the 10th iteration.

103

D.1

The TEST option is turned on for this case in order to print out dimensional matrices

and gradients. The PRINTI option is turned on in the example so that the generated

time history can be checked. PRINTO is turned on to provide a check on the imple-

mentation of the time history estimation in GIRL. PRINTI and PRINTO result in large

amounts of output (particularly PRINTI); thus, this case should probably be run

first without them. The case can be rerun with them turned on if necessary for de-

bugging. The RELAB option is used to read in more meaningful labels than the

defaults. The time history plot option is on by default. A plot is requested of the

corrected state estimate. NEXPLT is used to request plots of the true state, state

noise, and measurement noise, which are carried as the first three extra signals for

this case. Setting NUPLT to 1 does not affect the resulting plot for this case, but

saves the computer time otherwise required to notice that the second to fourth controls

are identically zero and thus need not be plotted.

Starting values are read in for the AN, CN, F, and GGI matrices. Both full and

diagonal input formats are used (there is littledifference for 1 X 1 matrices). A

starting BN is not read in, so it is 0, along with all of the other unmentioned matrices

except for RN. The AV, BV, and FV matrices are read in to specify the unknowns.

GGI is treated separately and is specified to be unknown by ITG in the NAMELIST.

The values of MX and MZ are set to 1 from the sizes read in for the AN and GGI mat-

rices. The BN matrix was not read in, but MU is set to 1 because of the unknown

derivative of the first control specified by BV. The value of MB is set to NCASE

which is i; even though S and H are both 0 for this case, MB must be defined, and 0
is not an allowable value.

The final estimates, Cram_r-Rao bounds, and true values are found in the

following table.

Cram_r-Rao True value
Estimate bound

AN -0.8897 0.20 -1.0

BN 9.619 1.5 10.0

FN 2.071 0.21 2.0

The measurement noise covariance matrix, _, is not directly estimated, but

can be computed from the residual power estimate, GGI -I, and the estimate of the

prediction error power, P (the Riccati covariance matrix).

=/G 2 -p

= _]GGI-I- p

= _]. 8176 -1 - .2184

= 1.0023

104

This compares to the true value of 1. A Cram_r-Rao bound is not computed
for _.

The time history plots from this case are shown below.

D.I

o l _ jlJ

-4

-4

-20

-20

0

,...a

-_?0

o , 2 _ , L 6' 4
TIME

MML[3 TEST CASE 1. ONE-DfMENSIONRL SIMULRTED ORTR.

g 0,0.0.0.

BI 9 I0

105

D.2

D. 2 Longitudinal Test Cases

The second and third test cases are longitudinal cases using the standard

aircraft routines. Both use actual flightdata from a T-37 aircraft (ref. i0). These

two cases are set up as a single job, but can be run separately.

A common type of update to the standard aircraft routines is illustrated in these

check cases: a modification to automatically compute weights and inertias. Some-

times fuel weights or other quantities recorded as extra signals are used for such

computations. In the test case here, a table of fuel weights and times obtained from

pilot lap notes is read in subroutine ONCE. Also read in are tables to obtain total

weight and inertias as a function of fuel weight. Subroutine AVERAG then uses
linear interpolation on these tables to automatically obtain the totalweight and inertias

for each maneuver. The modification instructions for this update, followed by the

resulting modified program listings, are shown in supplement 2. The test cases can

be run without modifying the program by entering the weights and inertias from the

output listing into NAMELIST USER.

Next on supplement 2 are the input cards and output listings for the test cases.

A simple predicted-derivative data set is used which has a constant value for each

derivative. One lateral-directional derivative, C_ 3, is included to illustratethat itis ignored for these longitudinal cases.

Test case 2is an unusual maneuver, designed for estimatingCm. (ref. 11).
a

This maneuver requires several of the program's more sophisticated features.
Because of the significant variations of _, V, O, and q0 during the maneuver, the

time-varying option must be used. Since the aircraft does a complete 360 ° roll
during this longitudinal maneuver, the lateral-directional cross-coupling terms are
quite important, particularly in the _ and (_ equations. MZ is set to 4 to eliminate the
a observation equation, using the simplified low a longitudinal equations (compare

x
the lists of unknowns in the output of the second and third test eases). In order to
reasonably match a for this maneuver, thrust and drag must be treated separately

x

because of the _ variation. (Such treatment can be made, but is not included in the
test case.) The default automatic scaling for altitude (extra signal 7) is overridden
to obtain a more sensitive scale, since the default would include 0 in the scale.
FREQCR is set in order to obtain filtered residual powers and use them to adjust the

Cram_r-Raobounds. An RV matrix is read in to define Cm. (RN2,1) to be unknown.

The time history follows on cards. The record length of the input time history is set
to 23 in order to use one less card per time point than with the default, because the
last two channels are not used for this case.

Convergence is rapid and monotone. The first iteration changes the linear
1

unknowns only and lowers the cost functional by 25 orders of magnitude. The second

iteration changes all of the unknowns and reduces the cost functional by a factor of 4.
The solution has then been essentially reached; the remaining iterations just add more
significant digits. Note that the filtered error sum and log determinant are slightly
better (in the fourth and fifth places) after iteration 3 than at the final value. This

106

Do2

is not unusual, because these are not the quantities minimized (the unfiltered

weighted error sum is minimized). Needless to say, these quantities should be

expected to be at least near their minima as they are on this case. The fitis

shown on the following pages.

107

D.2

^

8
° 8 g

o

11B

g .o
o

o c3

H3t_ IH_

8
o_
i

o o 8 _ "
i

J U138

108

D.2

o

:z:

z

,T,

,.a

,w,
i

,T,=

E_

o
zc

109

D.2

Test case 3 is a set of elevator pulses typical of the data normally obtained for

longitudinal stability and control derivative estimation. The time-varying option is
not needed for this case. The more complicated longitudinal equations including a

x

are used in the sample run (although the case will run quite well and use less com-

puter time if MZ is set to 4 to eliminate ax). The convergence is excellent and similar

to the previous case. Several observations can be made about the fit shown below.

0 •

0.2

0.0

-0.2

2

I

0

8

-4

-8

0

I0

-I0

I0

-I0

0 1 2 3 4 5 6

TIME

MMLE3 TEST _RSE 3. T30 FLT IBO CRSE 20-21- UP RND OOidN ELEYRTOR PULSES-

I1.34.g.23.

110

D.3

The resolution on O is relatively poor for this maneuver, but does not appear to

have caused any problems (the rounded corners on the bit jumps are due to digital

filtering done after the flight). The ax match shows some significant discrepancies.

The discrepancies are strongly correlated with _, and not with q or 5e. This sug-

gests a significant nonlinearity in the C X versus c_curve. Since _ ranges from -1 °

to 5° , it would not be surprising to find the linear derivative C X inadequate. A C X 2

term, either replacing or in addition to the C X term, might give a better model.

Nonlinear terms such as C X 2 can be implemented in MMLE3 by forming 2 as an extra
(I

control. This task is appropriate for subroutine THMOD or can be done by a separate

program to add the signal to the data file (of course, the c_used for this purpose

should be corrected to the center of gravity and for any upwash). Running this case

with a C X 2 term is left as a relatively simple exercise in using MMLE3.
6/

D. 3 Lateral-Directional Test Case

The fourth test case is a lateral-directional case using the standard aircraft

routines. This case consists of actual flight data from an oblique wing aircraft

(ref. 12); the wing is not skewed during this maneuver. The data are typical of

those obtained for lateral-directional stability and control derivative estimation.

There are no program modifications for this test case. The input cards and

output listing are in supplement 2 following the previous test cases. This case is

run without a predicted-derivative data set to illustrate that option. Vehicle geometry

and instrument positions are read in NAMELIST USER. The weight and inertias are

also read in the NAMELIST for this case, in contrast to the previous two test cases,

which contain an update to compute them. This case is run using metric units. The

engine revolutions per minute (extra signal ii) is specified to be found on channel 10

of the input data instead of the default channel 26. Since no predicted-derivative

data set was used, a starting AN matrix must be read in to provide reasonable starting

estimates. Note that the AN read in is not square. The program accepts this input,

but later changes the dimensions used to be consistent. No BN matrix is read in, so

the starting estimates of the control derivatives are all 0. BV is read in order to

override the default that includes Cyb as an unknown. The BV matrix read in also
a

includes values in the fifth row to illustrate that they are ignored. The number of

rows of BN (and thus BV) is forced internally to equal MX (4 for this case) and any

entries outside of this range are ignored.

Convergence is rapid and uneventful. The resulting fit is shown below.

111

D.3

8

.:0
c:.

-20

4.0

-40

0,I_

0.0

-0.1

0

z:
o..

-20

20

-20

40

-40

10

_: 0

-10

0 2 4 B B I0 12 14]6

TIME

ML[3 TEST C$E 4. 8KEN MINO FLIGHT I CRSE 16-16. RUDOER-RILERON OOUBLET$.

6.32.31.B.

112

REFERENCES

I ,

.

.

.

.

.

.

.

°

I0.

11.

12.

Maine, Richard E.; and lliff,Kenneth W.: User's Manual for MMLE3, A

General FORTRAN Program for Maximum Likelihood Parameter Estimation.

NASA TP-1563, 1980.

UPDATE Version 1 Reference Manual. Pubn. No. 60449900, Control Data Corp.,
1980.

FORTRAN Extended Version 4 Reference Manual. Pubn. No. 60497800, Control
Data Corp., 1978.

ProgrammingCalComp Pen Plotters. California Computer Products, Inc.,
Sept. 1969.

American Standard FORTRAN. ASA X3.9-1966, American Stand. Assn., Inc.,
1966.

Smith, B. T.; Boyle, J. M.; Dongarra, J. J.; Garbow, B. S.; Ikebe, Y.;

Klema, V. C.; and Molcr, C. B.: Matrix Eigensystem Routines--EISPACK

Guide. Lecture Notes in Computer Science, 6. Second ed. Springer-
Verlag (Berlin), 1976.

Moler, Cleve; and Van Loan, Charles: Nineteen Dubious Ways to Compute the

Exponential ofaMatrix. SIAM Review, vol. 20, no. 4, Oct. 1978, pp. 801-836.

Wilkinson, J. It.: The Algebraic Eigenvalue Problem. Clarendon Press
(London), 1978.

Vaughan, David R.: A Nonreeursive Algebraic Solution for the Discrete Riccati

Equation. IEEE Trans. Automat. Contr., vol. AC-15, no. 5, 1970, pp. 597-599.

Sharer, Mary F.: Stability and Control Derivatives of the T-37B Airplane.
NASA TM X-56036, 1975.

Maine, Richard E.; and Iliff, Kenneth W.: Maximum Likelihood Estimation of

Translational Acceleration Deriw, tives From Flight Data. AIAA Paper 78-1342,
Aug. 1978.

Maine, Richard E.: Aerodynamic Derivatives for an Oblique Wing Aircraft

Estimated From Flight Data by Using a Maximum Likelihood Technique.
NASA TP-1336, 1978.

113

1 Report No. 2 Government Accession No

NASA TP- 1690

4 Title and Subtitle

PROGRAMMER'S MANUAL FOR MMLE3, A GENERAL FORTRAN
PROGRAM FOR MAXIMUM LIKELItIOOD PARAMFTER ESTIMATION

7 Authorls)

Richard E. Maine

9, Perforrqing Organization Name and Address

NASA Dryden Flight Research Center
P.O. Box 273

Edwards, California 93523

12. Sponsoring Agency Narne and Address

National Aeronautics and Space Administration

Washing'ton, D.C. 20546

3, Recipient's Catalog No

5 Report Date

June 1981
6. Performing Organization Code

505-36-24

Performing Organization Report No

H-1105

10. Work Unit No.

11. Contract or Grant No

13 Type of Report and Period Covered

Technical Paper

I.
14 Sponsoring Agency Code

15. Supplementary Notes

Microfiche supplements are provided in back cover.

Information for requesting tile MMLE3 program is included.

16 Abstract

This report is a programmer's manual for the FORTRAN IV computer program

MMI,I,:3. MMLf.:3 is a maximum likelihood parameter estimation program capable of

handling general bilinear dynamic equations of arbitrary ord_!r with measurement

noise and/or state noise (process noise). The basle MMIA:,3 program is quite general

and, therefore, applicable to a wide wn'iety of problems. The basle program can
interact with a set of user written problem specific routines to simplify the use of the

program on specific systems. A set of user routines for the aircraft stability and con

trol derivative estimation problem is provided with the program. The implementation

of the program on speeifie computer systems is discussed. The structure of the pro

gram is diagrammed, and the funetion and operation of individual routines is described.

Complete listings and referenee maps of the routines are included on mierofiehe as a

supplement. Four test cases are diseussed; listings of the input e'_rds and progr'_m

output for the test c_mes are included on microfiche as a supplement. The theory and

use of the progrmn are described in the User's Manual for MMI,I';3, A General FOWFRAN

Program for M'_ximum l,ikelihood Parameter Estimation by Richard E. Maine and
Kenneth W. lliff (NASA TP 1563).

17 Key Words (Suggested by AuthorIs))

Maximum likelihood
Parameter estimation

Aireraft stability and eontrol

Computer programs

System identification

Aireraft flight testing

19. Security Classif. (of this report)

Unclassified

18 Distribution Statement

Unclassified-Unlimited

20. Security Ciassif. (of this page)

Unclassified

STAR category 59

21. No. of Pages 22 Price"

118 A06

*Pot" sale by the National Technical Information Se_ice, Springfield, Virginia 22161

NASA-Lar,_II ey, 1981

